-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTitleModeling.java
194 lines (166 loc) · 6.72 KB
/
TitleModeling.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*
* File: TitleModeling.java
* Author: Jackson Davenport
*
* Takes as input a subreddit and a phrase to test. This will load up and
* recreate the distributions saved and then check the probability of the
* given title according to the distribution belonging to this subreddit.
*/
import java.io.BufferedReader;
import java.io.Serializable;
import java.io.FileInputStream;
import java.io.ObjectInputStream;
import java.io.IOException;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.util.ArrayList;
import java.util.Scanner;
import java.util.Hashtable;
import java.util.Enumeration;
public class TitleModeling {
public static void main(String[] args){
//System.out.println("\tStart: TitleModeling");
Util.initTime();
// Check input
if(args.length != 2){
System.out.println("Invalid Input: Include input [subreddit] [\"Example Title\"]");
System.out.println("args.length = " + args.length);
System.exit(0);
}
String subreddit = args[0];
String phrase = args[1];
// Load up file readers based off of the subreddit passed in
String fileNameInputUni = "Unigram_" + subreddit + ".txt";
String fileNameInputBi = "Bigram_" + subreddit + ".txt";
BufferedReader readerUni = Util.openReadFile(fileNameInputUni);
BufferedReader readerBi = Util.openReadFile(fileNameInputBi);
//System.out.println("Files Found");
// //
// Rebuild the distributions given the text files //
// //
RecreateDistributions rd = new RecreateDistributions();
Distributions dist = rd.rebuildDistribution(subreddit, readerUni, readerBi);
// Unigram Distribution
Hashtable<String, Integer> unigramDistribution = dist.getUnigramDistribution();
// Bigram Distribution
Hashtable<String, BigramElement> bigramDistribution = dist.getBigramDistribution();
Util.logTime("milliseconds to recreate distributions");
// //
// Mixture Model of probability //
// //
String baseWord, prevWord, currentLine;
double totalUniCount = (double) dist.getTotalUni();
String test = phrase.toLowerCase();
String[] parsedTest = test.split(" ");
//Keep track of each iteration of probability
ArrayList<Double> PuList = new ArrayList<Double>();
ArrayList<Double> PbList = new ArrayList<Double>();
//Find Pu(Word) = Pm(The) * Pm(stock) * ...
for(int i = 0; i < parsedTest.length; i++){
//Get the count of the word
if(unigramDistribution.containsKey(parsedTest[i])){
double PuCount = (double) unigramDistribution.get(parsedTest[i]);
PuList.add(PuCount / totalUniCount);
}
else{
PuList.add((double) 0.000001);
}
}
//Find Pb(Word | previous word)
for(int i = 1; i < parsedTest.length; i++){
//Get the count of the word
baseWord = parsedTest[i];
prevWord = parsedTest[i-1];
if(bigramDistribution.containsKey(baseWord) && bigramDistribution.get(baseWord).containsKey(prevWord)){
double PbCount = (double) bigramDistribution.get(baseWord).getCount(prevWord);
double PbSize = (double) bigramDistribution.get(baseWord).getTotalCount();
PbList.add(PbCount / PbSize);
}
else{
PbList.add((double) 0.000001);
}
}
Util.logTime("milliseconds to determine probability per word");
// //
// Final Summation/Calculation/Weighting //
// //
double likelihood = getOptimalWeights(PuList, PbList);
Util.logTime("milliseconds to determine optimal weights");
System.out.println("\n----------------------------------");
System.out.println("Subreddit : /r/" + subreddit);
System.out.println("Log Likelihood: " + likelihood);
System.out.println("----------------------------------");
}
public static double getOptimalWeights(ArrayList<Double> PuList, ArrayList<Double> PbList){
double optimalWeight = 0;
double likelihood = Double.NEGATIVE_INFINITY;
for(double y = 0; y <= 1; y += 0.0001){
double summation = 0;
for(int i = 0; i < PbList.size(); i++){
// Lm = Summation(i) ( log[yPu(wi) + (1-y)Pb(wi|wi-1)] )
summation += Math.log( y * PuList.get(i) + (1 - y) * PbList.get(i) );
}
if(summation > likelihood){
optimalWeight = y;
likelihood = summation;
}
}
return likelihood;
}
public static double runSim(Distributions dist, String phrase){
// Unigram Distribution
Hashtable<String, Integer> unigramDistribution = dist.getUnigramDistribution();
// Bigram Distribution
Hashtable<String, BigramElement> bigramDistribution = dist.getBigramDistribution();
Util.logTime("milliseconds to recreate distributions");
// //
// Mixture Model of probability //
// //
String baseWord, prevWord, currentLine;
double totalUniCount = (double) dist.getTotalUni();
String test = phrase.toLowerCase();
String[] parsedTest = test.split(" ");
//Keep track of each iteration of probability
ArrayList<Double> PuList = new ArrayList<Double>();
ArrayList<Double> PbList = new ArrayList<Double>();
//Find Pu(Word) = Pm(The) * Pm(stock) * ...
for(int i = 0; i < parsedTest.length; i++){
//Get the count of the word
if(unigramDistribution.containsKey(parsedTest[i])){
double PuCount = (double) unigramDistribution.get(parsedTest[i]);
PuList.add(PuCount / totalUniCount);
}
else{
PuList.add((double) 0.000001);
}
}
//Find Pb(Word | previous word)
for(int i = 1; i < parsedTest.length; i++){
//Get the count of the word
baseWord = parsedTest[i];
prevWord = parsedTest[i-1];
if(bigramDistribution.containsKey(baseWord) && bigramDistribution.get(baseWord).containsKey(prevWord)){
double PbCount = (double) bigramDistribution.get(baseWord).getCount(prevWord);
double PbSize = (double) bigramDistribution.get(baseWord).getTotalCount();
PbList.add(PbCount / PbSize);
}
else{
PbList.add((double) 0.000001);
}
}
Util.logTime("milliseconds to determine probability per word");
// //
// Final Summation/Calculation/Weighting //
// //
return getOptimalWeights(PuList, PbList);
}
}
/*
Data via deserializing the data, however, results showed that it was about 3x slower to do so
String fileNameInputSer = "Distribution_" + subreddit + ".ser";
Distributions distribution = Util.deserializeDistribution(fileNameInputSer);
Hashtable<String, BigramElement> bigramDistribution = distribution.getBigramDistribution();
Hashtable<String, Integer> unigramDistribution = distribution.getUnigramDistribution();
double totalUniCount = (double) distribution.getTotalUni();
*/