Skip to content

Latest commit

 

History

History
218 lines (189 loc) · 5.93 KB

File metadata and controls

218 lines (189 loc) · 5.93 KB

中文文档

Description

The min-product of an array is equal to the minimum value in the array multiplied by the array's sum.

  • For example, the array [3,2,5] (minimum value is 2) has a min-product of 2 * (3+2+5) = 2 * 10 = 20.

Given an array of integers nums, return the maximum min-product of any non-empty subarray of nums. Since the answer may be large, return it modulo 109 + 7.

Note that the min-product should be maximized before performing the modulo operation. Testcases are generated such that the maximum min-product without modulo will fit in a 64-bit signed integer.

A subarray is a contiguous part of an array.

 

Example 1:

Input: nums = [1,2,3,2]
Output: 14
Explanation: The maximum min-product is achieved with the subarray [2,3,2] (minimum value is 2).
2 * (2+3+2) = 2 * 7 = 14.

Example 2:

Input: nums = [2,3,3,1,2]
Output: 18
Explanation: The maximum min-product is achieved with the subarray [3,3] (minimum value is 3).
3 * (3+3) = 3 * 6 = 18.

Example 3:

Input: nums = [3,1,5,6,4,2]
Output: 60
Explanation: The maximum min-product is achieved with the subarray [5,6,4] (minimum value is 4).
4 * (5+6+4) = 4 * 15 = 60.

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 107

Solutions

Python3

class Solution:
    def maxSumMinProduct(self, nums: List[int]) -> int:
        mod = int(1e9) + 7
        n = len(nums)
        left = [-1] * n
        right = [n] * n
        stk = []
        for i, v in enumerate(nums):
            while stk and nums[stk[-1]] >= v:
                stk.pop()
            if stk:
                left[i] = stk[-1]
            stk.append(i)
        stk = []
        for i in range(n - 1, -1, -1):
            while stk and nums[stk[-1]] > nums[i]:
                stk.pop()
            if stk:
                right[i] = stk[-1]
            stk.append(i)
        s = [0] + list(accumulate(nums))
        ans = max(v * (s[right[i]] - s[left[i] + 1]) for i, v in enumerate(nums))
        return ans % mod

Java

class Solution {
    public int maxSumMinProduct(int[] nums) {
        int n = nums.length;
        int[] left = new int[n];
        int[] right = new int[n];
        Arrays.fill(left, -1);
        Arrays.fill(right, n);
        Deque<Integer> stk = new ArrayDeque<>();
        for (int i = 0; i < n; ++i) {
            while (!stk.isEmpty() && nums[stk.peek()] >= nums[i]) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                left[i] = stk.peek();
            }
            stk.push(i);
        }
        stk.clear();
        for (int i = n - 1; i >= 0; --i) {
            while (!stk.isEmpty() && nums[stk.peek()] > nums[i]) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                right[i] = stk.peek();
            }
            stk.push(i);
        }
        long[] s = new long[n + 1];
        for (int i = 0; i < n; ++i) {
            s[i + 1] = s[i] + nums[i];
        }
        long ans = 0;
        for (int i = 0; i < n; ++i) {
            long t = nums[i] * (s[right[i]] - s[left[i] + 1]);
            ans = Math.max(ans, t);
        }
        return (int) (ans % 1000000007);
    }
}

C++

class Solution {
public:
    int maxSumMinProduct(vector<int>& nums) {
        int n = nums.size();
        vector<int> left(n, -1);
        vector<int> right(n, n);
        stack<int> stk;
        for (int i = 0; i < n; ++i) {
            while (!stk.empty() && nums[stk.top()] >= nums[i]) stk.pop();
            if (!stk.empty()) left[i] = stk.top();
            stk.push(i);
        }
        stk = stack<int>();
        for (int i = n - 1; i >= 0; --i) {
            while (!stk.empty() && nums[stk.top()] > nums[i]) stk.pop();
            if (!stk.empty()) right[i] = stk.top();
            stk.push(i);
        }
        vector<long long> s(n + 1);
        for (int i = 0; i < n; ++i) s[i + 1] = s[i] + nums[i];
        long long ans = 0;
        const int mod = 1e9 + 7;
        for (int i = 0; i < n; ++i) {
            long long t = nums[i] * (s[right[i]] - s[left[i] + 1]);
            ans = max(ans, t);
        }
        return (int)(ans % mod);
    }
};

Go

func maxSumMinProduct(nums []int) int {
	n := len(nums)
	left := make([]int, n)
	right := make([]int, n)
	for i := range left {
		left[i] = -1
		right[i] = n
	}
	stk := []int{}
	for i, v := range nums {
		for len(stk) > 0 && nums[stk[len(stk)-1]] >= v {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			left[i] = stk[len(stk)-1]
		}
		stk = append(stk, i)
	}
	stk = []int{}
	for i := n - 1; i >= 0; i-- {
		for len(stk) > 0 && nums[stk[len(stk)-1]] > nums[i] {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			right[i] = stk[len(stk)-1]
		}
		stk = append(stk, i)
	}
	s := make([]int, n+1)
	for i, v := range nums {
		s[i+1] = s[i] + v
	}
	ans := 0
	for i, v := range nums {
		t := v * (s[right[i]] - s[left[i]+1])
		if ans < t {
			ans = t
		}
	}
	mod := int(1e9) + 7
	return ans % mod
}

...