forked from awslabs/open-data-registry
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblack_marble_combustion.yaml
32 lines (32 loc) · 1.64 KB
/
black_marble_combustion.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Name: Nighttime-Fire-Flare
Description: Detection of nighttime combustion (fire and gas flaring) from daily top of atmosphere data from NASA's Black Marble VNP46A1 product using VIIRS Day/Night Band and VIIRS thermal bands.
Documentation: https://docs.google.com/document/d/e/2PACX-1vSeDj3BbmvKCrFY3aimZ7-0eMhEN0OFIFk1JDTv3Fvfe4BjfFTwuS8OSMuSGa5vDs2fQKjlrJN8Ut2X/pub
Contact: schakraborty@usra.edu
ManagedBy: "[USRA](https://srijachakraborty.com/) and [NASA Black Marble](https://blackmarble.gsfc.nasa.gov/)"
UpdateFrequency: New combustion detections are added whenever it is available and with model updates.
Tags:
- aws-pds
- anomaly detection
- classification
- earth observation
- satellite imagery
- disaster response
- socioeconomic
- environmental
- urban
- NASA SMD AI
License: There are no restrictions on the use of this data.
Resources:
- Description: NASA Black Marble Combustion Detections, Earth Science Training Data
ARN: arn:aws:s3:::us-west-2.opendata.source.coop/vnp46a1_thermal_anomaly/
Region: us-west-2
Type: S3 Bucket
Explore:
DataAtWork:
Publications:
- Title: NASA SMD AI Workshop Report
URL: https://science.nasa.gov/files/atoms/files/NASA%20SMD%20AI%20Workshop%2021%20(spreads)%20(1).pdf
AuthorName: SMD Artificial Intelligence Machine Learning (AI/ML) Working Group
- Title: Potentially underestimated gas flaring activities—a new approach to detect combustion using machine learning and NASA's Black Marble product suite
URL: https://doi.org/10.1088/1748-9326/acb6a7
AuthorName: Srija Chakraborty, Tomohiro Oda, Virginia Kalb, Zhuosen Wang, Miguel O Román