-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathget_reply.py
74 lines (62 loc) · 2.09 KB
/
get_reply.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import random
import json
import torch
from model import NeuralNet
from spacy_utils import bag_of_words, tokenize
# from nltk_utils import bag_of_words, tokenize
from items_list import items
from get_order import order
from train import data
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
with open('intents.json', 'r') as json_data:
intents = json.load(json_data)
# FILE = "data.pth"
# data = torch.load(FILE)
input_size = data["input_size"]
hidden_size = data["hidden_size"]
output_size = data["output_size"]
all_words = data['all_words']
tags = data['tags']
model_state = data["model_state"]
# print(input_size,hidden_size,output_size,all_words,tags,model_state)
input_size = data["input_size"]
hidden_size = data["hidden_size"]
output_size = data["output_size"]
all_words = data['all_words']
tags = data['tags']
model_state = data["model_state"]
model = NeuralNet(input_size, hidden_size, output_size).to(device)
model.load_state_dict(model_state)
model.eval()
names = list(items.keys())
prices = list(items.values())
text = ""
for item , price in items.items():
text += f"""
{item.upper()} ----- {price} $. \n
"""
def reply(input):
sentence = tokenize(input)
X = bag_of_words(sentence, all_words)
X = X.reshape(1, X.shape[0])
X = torch.from_numpy(X).to(device)
output = model(X)
_, predicted = torch.max(output, dim=1)
tag = tags[predicted.item()]
probs = torch.softmax(output, dim=1)
prob = probs[0][predicted.item()]
if prob.item() > 0.50:
for intent in intents['intents']:
if tag == intent["tag"]:
response = random.choice(intent['responses'])
if str(response).strip() == "asking_menu":
return f"{text}"
elif str(response).strip() == "asking_prices":
return f"{text}"
elif str(response).strip() == "giving_order":
response = order(input)
return response
else:
return response
else:
return "Sorry! I did not understand this."