-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
304 lines (235 loc) · 11.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
from flask import Flask, render_template, request, redirect, url_for, send_from_directory
from werkzeug.utils import secure_filename
from PIL import Image
import numpy as np
import cv2
# Define allowed file types
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
app = Flask(__name__)
# Define upload folder and allowed file types
app.config['UPLOAD_FOLDER'] = 'uploads/'
app.config['ALLOWED_EXTENSIONS'] = ALLOWED_EXTENSIONS
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
@app.route('/')
def index():
return render_template('index.html')
@app.route('/', methods=['POST'])
def upload_files():
# Get the uploaded files
file1 = request.files['file1']
file2 = request.files['file2']
# Check if the files are allowed
if file1 and allowed_file(file1.filename) and file2 and allowed_file(file2.filename):
# Save the files to the upload folder
filename1 = secure_filename(file1.filename)
filename2 = secure_filename(file2.filename)
file1.save(os.path.join(app.config['UPLOAD_FOLDER'], filename1))
file2.save(os.path.join(app.config['UPLOAD_FOLDER'], filename2))
# Run the Python script to generate the new image
content_path=os.path.join(app.config['UPLOAD_FOLDER'], filename1)
style_path =os.path.join(app.config['UPLOAD_FOLDER'], filename2)
# img1 = img1.convert('RGB')
# img2 = img2.convert('RGB')
"""Import and configure modules"""
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['figure.figsize'] = (10,10)
mpl.rcParams['axes.grid'] = False
import numpy as np
from PIL import Image
import time
import functools
# %tensorflow_version 1.x
import tensorflow as tf
from tensorflow.keras.utils import image_dataset_from_directory as kp_image
from tensorflow.python.keras import models
# from tensorflow.python.keras import losses
# from tensorflow.python.keras import layers
# from tensorflow.python.keras import backend as K
from tensorflow.keras.preprocessing.image import img_to_array
# # Set up some global values here
# content_path = 'images.jpg'
# style_path = 'color.jpg'
"""# Visualize the input"""
def load_img(path_to_img):
max_dim = 512
img = Image.open(path_to_img)
long = max(img.size)
scale = max_dim/long
img = img.resize((round(img.size[0]*scale), round(img.size[1]*scale)), Image.ANTIALIAS)
img = img_to_array(img)
# We need to broadcast the image array such that it has a batch dimension
img = np.expand_dims(img, axis=0)
return img
content = load_img(content_path).astype('uint8')
style = load_img(style_path).astype('uint8')
"""## Prepare the data"""
def load_and_process_img(path_to_img):
img = load_img(path_to_img)
img = tf.keras.applications.vgg19.preprocess_input(img)
return img
def deprocess_img(processed_img):
x = processed_img.copy()
if len(x.shape) == 4:
x = np.squeeze(x, 0)
assert len(x.shape) == 3, ("Input to deprocess image must be an image of "
"dimension [1, height, width, channel] or [height, width, channel]")
if len(x.shape) != 3:
raise ValueError("Invalid input to deprocessing image")
# perform the inverse of the preprocessing step
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
x = x[:, :, ::-1]
x = np.clip(x, 0, 255).astype('uint8')
return x
# Content layer where will pull our feature maps
content_layers = ['block5_conv2']
# Style layer we are interested in
style_layers = ['block1_conv1',
'block2_conv1',
'block3_conv1',
'block4_conv1',
'block5_conv1'
]
num_content_layers = len(content_layers)
num_style_layers = len(style_layers)
def get_model():
# Load our model. We load pretrained VGG, trained on imagenet data
vgg = tf.keras.applications.vgg19.VGG19(include_top=False, weights='imagenet')
vgg.trainable = False
# Get output layers corresponding to style and content layers
style_outputs = [vgg.get_layer(name).output for name in style_layers]
content_outputs = [vgg.get_layer(name).output for name in content_layers]
model_outputs = style_outputs + content_outputs
# Build model
return models.Model(vgg.input, model_outputs)
def get_content_loss(base_content, target):
return tf.reduce_mean(tf.square(base_content - target))
"""# Computing style loss"""
def gram_matrix(input_tensor):
"""Computes the Gram matrix of a given tensor."""
# Reshape the tensor to have channels first
channels = int(input_tensor.shape[-1])
a = tf.reshape(input_tensor, [-1, channels])
n = tf.shape(a)[0]
gram = tf.matmul(a, a, transpose_a=True)
return gram / tf.cast(n, tf.float32)
def get_style_loss(base_style, gram_target):
"""Computes the style loss between a base style tensor and a target Gram matrix."""
# Get the shape of the base style tensor
height, width, channels = base_style.get_shape().as_list()
# Compute the Gram matrix of the base style tensor
gram_style = gram_matrix(base_style)
# Compute the mean squared difference between the Gram matrices
loss = tf.reduce_mean(tf.square(gram_style - gram_target))
return loss
def get_feature_representations(model, content_path, style_path):
# Load our images in
content_image = load_and_process_img(content_path)
style_image = load_and_process_img(style_path)
# batch compute content and style features
style_outputs = model(style_image)
content_outputs = model(content_image)
# Get the style and content feature representations from our model
style_features = [style_layer[0] for style_layer in style_outputs[:num_style_layers]]
content_features = [content_layer[0] for content_layer in content_outputs[num_style_layers:]]
return style_features, content_features
def compute_loss(model, loss_weights, init_image, gram_style_features, content_features):
style_weight, content_weight = loss_weights
model_outputs = model(init_image)
style_output_features = model_outputs[:num_style_layers]
content_output_features = model_outputs[num_style_layers:]
style_score = 0
content_score = 0
# Accumulate style losses from all layers
# Here, we equally weight each contribution of each loss layer
weight_per_style_layer = 1.0 / float(num_style_layers)
for target_style, comb_style in zip(gram_style_features, style_output_features):
style_score += weight_per_style_layer * get_style_loss(comb_style[0], target_style)
# Accumulate content losses from all layers
weight_per_content_layer = 1.0 / float(num_content_layers)
for target_content, comb_content in zip(content_features, content_output_features):
content_score += weight_per_content_layer* get_content_loss(comb_content[0], target_content)
style_score *= style_weight
content_score *= content_weight
# Get total loss
loss = style_score + content_score
return loss, style_score, content_score
def compute_grads(cfg):
with tf.GradientTape() as tape:
all_loss = compute_loss(**cfg)
# Compute gradients wrt input image
total_loss = all_loss[0]
return tape.gradient(total_loss, cfg['init_image']), all_loss
import IPython.display
def run_style_transfer(content_path,
style_path,
num_iterations=1000,
content_weight=1e3,
style_weight=1e-2):
# We don't need to (or want to) train any layers of our model, so we set their
# trainable to false.
model = get_model()
for layer in model.layers:
layer.trainable = False
# Get the style and content feature representations (from our specified intermediate layers)
style_features, content_features = get_feature_representations(model, content_path, style_path)
gram_style_features = [gram_matrix(style_feature) for style_feature in style_features]
# Set initial image
init_image = load_and_process_img(content_path)
init_image = tf.Variable(init_image, dtype=tf.float32)
# Create our optimizer
opt = tf.optimizers.Adam(learning_rate=5, epsilon=1e-1)
# For displaying intermediate images
# Store our best result
best_loss, best_img = float('inf'), None
# Create a nice config
loss_weights = (style_weight, content_weight)
cfg = {
'model': model,
'loss_weights': loss_weights,
'init_image': init_image,
'gram_style_features': gram_style_features,
'content_features': content_features
}
# For displaying
num_rows = 2
num_cols = 5
# display_interval = num_iterations/(num_rows*num_cols)
norm_means = np.array([103.939, 116.779, 123.68])
min_vals = -norm_means
max_vals = 255 - norm_means
for i in range(num_iterations):
grads, all_loss = compute_grads(cfg)
loss, style_score, content_score = all_loss
opt.apply_gradients([(grads, init_image)])
clipped = tf.clip_by_value(init_image, min_vals, max_vals)
init_image.assign(clipped)
# end_time = time.time()
if loss < best_loss:
# Update best loss and best image from total loss.
best_loss = loss
best_img = deprocess_img(init_image.numpy())
return best_img, best_loss
best, best_loss = run_style_transfer(content_path,
style_path)
best=Image.fromarray(best.astype('uint8')).convert('RGB')
best = best.resize((500,500))
# best = best.save("Output.jpg")
new_filename = 'new_' + filename1 + '_' + filename2
best.save(os.path.join(app.config['UPLOAD_FOLDER'], new_filename))
# Display the generated image to the user
return render_template('display.html', file1=filename1,file2=filename2,filename=new_filename)
else:
# Invalid file type
return redirect(request.url)
@app.route('/uploads/<filename>')
def uploaded_file(filename):
return send_from_directory(app.config['UPLOAD_FOLDER'],
filename)
if __name__ == '__main__':
app.run(debug=True)