-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbase.py
511 lines (392 loc) · 18.7 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
def fit():
"""
slam_graph (Source, Light and Mass): Source Light Pixelized + Light Profile + Mass Total + Subhalo NFW
================================================================================================
slam_graph pipelines break the analysis down into multiple pipelines which focus on modeling a specific aspect of the strong
lens, first the Source, then the (lens) Light and finally the Mass. Each of these pipelines has it own inputs which
which customize the model and analysis in that pipeline.
The models fitted in earlier pipelines determine the model used in later pipelines. For example, if the SOURCE PIPELINE
uses a parametric `Sersic` profile for the bulge, this will be used in the subsequent MASS PIPELINE.
Using a SOURCE LP PIPELINE, LIGHT LP PIPELINE, MASS PIPELINE and SUBHALO PIPELINE this slam_graph script
fits `Imaging` of a strong lens system, where in the final model:
- The lens galaxy's light is a bulge+disk `Sersic` and `Exponential`.
- The lens galaxy's total mass distribution is an `Isothermal`.
- A dark matter subhalo near The lens galaxy mass is included as a`NFWMCRLudlowSph`.
- The source galaxy is an `Inversion`.
This uses the slam_graph pipelines:
`source_lp`
`source_pix`
`light_lp`
`mass_total`
`subhalo/detection`
Check them out for a full description of the analysis!
"""
# %matplotlib inline
# from pyprojroot import here
# workspace_path = str(here())
# %cd $workspace_path
# print(f"Working Directory has been set to `{workspace_path}`")
import numpy as np
import os
from os import path
cwd = os.getcwd()
from autoconf import conf
conf.instance.push(new_path=path.join(cwd, "config", "slam"))
import autofit as af
import autolens as al
import autolens.plot as aplt
import slam_graph
"""
__Dataset__
Load, plot and mask the `Imaging` data.
"""
dataset_waveband_list = ["g", "r"]
pixel_scale_list = [0.12, 0.08]
dataset_name = "lens_sersic"
dataset_main_path = path.join("dataset", "multi", dataset_name)
dataset_path = path.join(dataset_main_path, dataset_name)
dataset_list = []
for dataset_waveband, pixel_scale in zip(dataset_waveband_list, pixel_scale_list):
dataset = al.Imaging.from_fits(
data_path=path.join(dataset_main_path, f"{dataset_waveband}_data.fits"),
noise_map_path=path.join(
dataset_main_path, f"{dataset_waveband}_noise_map.fits"
),
psf_path=path.join(dataset_main_path, f"{dataset_waveband}_psf.fits"),
pixel_scales=pixel_scale,
)
mask_radius = 3.0
mask = al.Mask2D.circular(
shape_native=dataset.shape_native,
pixel_scales=dataset.pixel_scales,
radius=mask_radius,
)
dataset = dataset.apply_mask(mask=mask)
over_sample_size = al.util.over_sample.over_sample_size_via_radial_bins_from(
grid=dataset.grid,
sub_size_list=[8, 4, 1],
radial_list=[0.3, 0.6],
centre_list=[(0.0, 0.0)],
)
dataset = dataset.apply_over_sampling(over_sample_size_lp=over_sample_size)
dataset_list.append(dataset)
"""
__Settings AutoFit__
The settings of autofit, which controls the output paths, parallelization, database use, etc.
"""
settings_search = af.SettingsSearch(
path_prefix=path.join("slam_graph", "base"),
number_of_cores=1,
session=None,
)
"""
__Redshifts__
The redshifts of the lens and source galaxies, which are used to perform unit converions of the model and data (e.g.
from arc-seconds to kiloparsecs, masses to solar masses, etc.).
"""
redshift_lens = 0.5
redshift_source = 1.0
"""
__SOURCE LP PIPELINE__
The SOURCE LP PIPELINE fits an identical to the `start_here.ipynb` example, except:
- The model includes the (y,x) offset of each dataset relative to the first dataset, which is added to every
`AnalysisImaging` object such that there are 2 extra parameters fitted for each dataset.
"""
# Lens Light
centre_0 = af.GaussianPrior(mean=0.0, sigma=0.1)
centre_1 = af.GaussianPrior(mean=0.0, sigma=0.1)
total_gaussians = 30
gaussian_per_basis = 2
log10_sigma_list = np.linspace(-2, np.log10(mask_radius), total_gaussians)
bulge_gaussian_list = []
for j in range(gaussian_per_basis):
gaussian_list = af.Collection(
af.Model(al.lp_linear.Gaussian) for _ in range(total_gaussians)
)
for i, gaussian in enumerate(gaussian_list):
gaussian.centre.centre_0 = centre_0
gaussian.centre.centre_1 = centre_1
gaussian.ell_comps = gaussian_list[0].ell_comps
gaussian.sigma = 10 ** log10_sigma_list[i]
bulge_gaussian_list += gaussian_list
lens_bulge = af.Model(
al.lp_basis.Basis,
profile_list=bulge_gaussian_list,
)
# Source Light
centre_0 = af.GaussianPrior(mean=0.0, sigma=0.3)
centre_1 = af.GaussianPrior(mean=0.0, sigma=0.3)
total_gaussians = 30
gaussian_per_basis = 1
log10_sigma_list = np.linspace(-3, np.log10(1.0), total_gaussians)
bulge_gaussian_list = []
for j in range(gaussian_per_basis):
gaussian_list = af.Collection(
af.Model(al.lp_linear.Gaussian) for _ in range(total_gaussians)
)
for i, gaussian in enumerate(gaussian_list):
gaussian.centre.centre_0 = centre_0
gaussian.centre.centre_1 = centre_1
gaussian.ell_comps = gaussian_list[0].ell_comps
gaussian.sigma = 10 ** log10_sigma_list[i]
bulge_gaussian_list += gaussian_list
source_bulge = af.Model(
al.lp_basis.Basis,
profile_list=bulge_gaussian_list,
)
analysis_list = [al.AnalysisImaging(dataset=dataset) for dataset in dataset_list]
source_lp_result = slam_graph.source_lp.run(
settings_search=settings_search,
analysis_list=analysis_list,
lens_bulge=lens_bulge,
lens_disk=None,
mass=af.Model(al.mp.Isothermal),
shear=af.Model(al.mp.ExternalShear),
source_bulge=source_bulge,
mass_centre=(0.0, 0.0),
redshift_lens=redshift_lens,
redshift_source=redshift_source,
dataset_model=af.Model(al.DatasetModel),
)
"""
__SOURCE PIX PIPELINE__
The SOURCE PIX PIPELINE uses two searches to initialize a robust model for the `Pixelization` that
reconstructs the source galaxy's light.
This pixelization adapts its source pixels to the morphology of the source, placing more pixels in its
brightest regions. To do this, an "adapt image" is required, which is the lens light subtracted image meaning
only the lensed source emission is present.
The SOURCE LP Pipeline result is not good enough quality to set up this adapt image (e.g. the source
may be more complex than a simple light profile). The first step of the SOURCE PIX PIPELINE therefore fits a new
model using a pixelization to create this adapt image.
The first search, which is an initialization search, fits an `Overlay` image-mesh, `Delaunay` mesh
and `AdaptiveBrightnessSplit` regularization.
__Adapt Images / Image Mesh Settings__
If you are unclear what the `adapt_images` and `SettingsInversion` inputs are doing below, refer to the
`autolens_workspace/*/imaging/advanced/chaining/pix_adapt/start_here.py` example script.
__Settings__:
- Positions: We update the positions and positions threshold using the previous model-fitting result (as described
in `chaining/examples/parametric_to_pixelization.py`) to remove unphysical solutions from the `Inversion` model-fitting.
"""
positions_likelihood = source_lp_result.positions_likelihood_from(
factor=3.0, minimum_threshold=0.2
)
analysis_list = [
al.AnalysisImaging(
dataset=result.max_log_likelihood_fit.dataset,
adapt_image_maker=al.AdaptImageMaker(result=result),
positions_likelihood=positions_likelihood,
)
for result in source_lp_result
]
source_pix_result_1 = slam_graph.source_pix.run_1(
settings_search=settings_search,
analysis_list=analysis_list,
source_lp_result=source_lp_result,
mesh_init=al.mesh.Delaunay,
dataset_model=af.Model(al.DatasetModel),
)
"""
__SOURCE PIX PIPELINE 2 (with lens light)__
The second search, which uses the mesh and regularization used throughout the remainder of the slam_graph pipelines,
fits the following model:
- Uses a `Hilbert` image-mesh.
- Uses a `Delaunay` mesh.
- Uses an `AdaptiveBrightnessSplit` regularization.
- Carries the lens redshift, source redshift and `ExternalShear` of the SOURCE LP PIPELINE through to the
SOURCE PIX PIPELINE.
The `Hilbert` image-mesh and `AdaptiveBrightness` regularization adapt the source pixels and regularization weights
to the source's morphology.
Below, we therefore set up the adapt image using this result.
"""
analysis_list = [
al.AnalysisImaging(
dataset=result.max_log_likelihood_fit.dataset,
adapt_image_maker=al.AdaptImageMaker(result=result),
settings_inversion=al.SettingsInversion(
image_mesh_min_mesh_pixels_per_pixel=3,
image_mesh_min_mesh_number=5,
image_mesh_adapt_background_percent_threshold=0.1,
image_mesh_adapt_background_percent_check=0.8,
),
)
for result in source_pix_result_1
]
source_pix_result_2 = slam_graph.source_pix.run_2(
settings_search=settings_search,
analysis_list=analysis_list,
source_lp_result=source_lp_result,
source_pix_result_1=source_pix_result_1,
image_mesh=al.image_mesh.Hilbert,
mesh=al.mesh.Delaunay,
regularization=al.reg.AdaptiveBrightnessSplit,
dataset_model=af.Model(al.DatasetModel),
)
"""
__LIGHT LP PIPELINE__
The LIGHT LP PIPELINE uses one search to fit a complex lens light model to a high level of accuracy, using the
lens mass model and source light model fixed to the maximum log likelihood result of the SOURCE LP PIPELINE.
In this example it:
- Uses a multi Gaussian expansion with 2 sets of 30 Gaussians for the lens galaxy's light. [6 Free Parameters].
- Uses an `Isothermal` mass model with `ExternalShear` for the lens's total mass distribution [fixed from SOURCE PIX PIPELINE].
- Uses a `Pixelization` for the source's light [fixed from SOURCE PIX PIPELINE].
- Carries the lens redshift and source redshift of the SOURCE PIPELINE through to the MASS PIPELINE [fixed values].
"""
analysis_list = [
al.AnalysisImaging(
dataset=result.max_log_likelihood_fit.dataset,
adapt_image_maker=al.AdaptImageMaker(result=result),
raise_inversion_positions_likelihood_exception=False,
)
for result in source_pix_result_1
]
centre_0 = af.UniformPrior(lower_limit=-0.2, upper_limit=0.2)
centre_1 = af.UniformPrior(lower_limit=-0.2, upper_limit=0.2)
total_gaussians = 30
gaussian_per_basis = 2
log10_sigma_list = np.linspace(-2, np.log10(mask_radius), total_gaussians)
bulge_gaussian_list = []
for j in range(gaussian_per_basis):
gaussian_list = af.Collection(
af.Model(al.lp_linear.Gaussian) for _ in range(total_gaussians)
)
for i, gaussian in enumerate(gaussian_list):
gaussian.centre.centre_0 = centre_0
gaussian.centre.centre_1 = centre_1
gaussian.ell_comps = gaussian_list[0].ell_comps
gaussian.sigma = 10 ** log10_sigma_list[i]
bulge_gaussian_list += gaussian_list
lens_bulge = af.Model(
al.lp_basis.Basis,
profile_list=bulge_gaussian_list,
)
light_result = slam_graph.light_lp.run(
settings_search=settings_search,
analysis_list=analysis_list,
source_result_for_lens=source_pix_result_1,
source_result_for_source=source_pix_result_2,
lens_bulge=lens_bulge,
lens_disk=None,
dataset_model=af.Model(al.DatasetModel),
)
"""
__MASS TOTAL PIPELINE__
The MASS TOTAL PIPELINE uses one search to fits a complex lens mass model to a high level of accuracy,
using the lens mass model and source model of the SOURCE PIX PIPELINE to initialize the model priors and the lens
light model of the LIGHT LP PIPELINE.
In this example it:
- Uses a linear Multi Gaussian Expansion bulge [fixed from LIGHT LP PIPELINE].
- Uses an `PowerLaw` model for the lens's total mass distribution [priors initialized from SOURCE
PARAMETRIC PIPELINE + centre unfixed from (0.0, 0.0)].
- Uses a `Pixelization` for the source's light [fixed from SOURCE PIX PIPELINE].
- Carries the lens redshift and source redshift of the SOURCE PIPELINE through to the MASS TOTAL PIPELINE.
__Settings__:
- adapt: We may be using adapt features and therefore pass the result of the SOURCE PIX PIPELINE to use as the
hyper dataset if required.
- Positions: We update the positions and positions threshold using the previous model-fitting result (as described
in `chaining/examples/parametric_to_pixelization.py`) to remove unphysical solutions from the `Inversion` model-fitting.
"""
positions_likelihood = source_pix_result_1[0].positions_likelihood_from(
factor=3.0, minimum_threshold=0.2
)
analysis_list = [
al.AnalysisImaging(
dataset=result.max_log_likelihood_fit.dataset,
adapt_image_maker=al.AdaptImageMaker(result=result),
positions_likelihood=positions_likelihood,
)
for result in source_pix_result_1
]
mass_result = slam_graph.mass_total.run(
settings_search=settings_search,
analysis_list=analysis_list,
source_result_for_lens=source_pix_result_1,
source_result_for_source=source_pix_result_2,
light_result=light_result,
mass=af.Model(al.mp.PowerLaw),
dataset_model=af.Model(al.DatasetModel),
)
"""
__Output__
The slam_graph pipeline above outputs the model-fitting results to the `output` folder of the workspace, which includes
the usual model results, visualization, and .json files.
As described in the `autolens_workspace/*/results` package there is an API for loading these results from hard disk
to Python, for example so they can be manipulated in a Juypter notebook.
However, it is also often useful to output the results to the dataset folder of each lens in standard formats, for
example images of the lens and lensed source in .fits or visualization outputs like .png files. This makes transferring
the results more portable, especially if they are to be used by other people.
The `slam_util` module provides convenience methods for outputting many results to the dataset folder, we
use it below to output the following results:
- Images of the model lens light, lensed source light and source reconstruction to .fits files.
- A text `model.results` file containing the lens model parameter estimates.
- A subplot containing the fit in one row, which is output to .png.
- A subplot of the source reconstruction in the source plane in one row, which is output to .png.
"""
slam_graph.slam_util.output_result_to_fits(
output_path=path.join(dataset_path, "result"),
result=mass_result,
model_lens_light=True,
model_source_light=True,
source_reconstruction=True,
)
slam_graph.slam_util.output_model_results(
output_path=path.join(dataset_path, "result"),
result=mass_result,
filename="model.results",
)
slam_graph.slam_util.output_fit_multi_png(
output_path=dataset_path,
result_list=[mass_result],
filename="sie_fit",
)
slam_graph.slam_util.output_source_multi_png(
output_path=dataset_path,
result_list=[mass_result],
filename="source_reconstruction",
)
"""
__SUBHALO PIPELINE (single plane detection)__
The SUBHALO PIPELINE (single plane detection) consists of the following searches:
1) Refit the lens and source model, to refine the model evidence for comparing to the models fitted which include a
subhalo. This uses the same model as fitted in the MASS PIPELINE.
2) Performs a grid-search of non-linear searches to attempt to detect a dark matter subhalo.
3) If there is a successful detection a final search is performed to refine its parameters.
For this runner the SUBHALO PIPELINE customizes:
- The [number_of_steps x number_of_steps] size of the grid-search, as well as the dimensions it spans in arc-seconds.
- The `number_of_cores` used for the gridsearch, where `number_of_cores > 1` performs the model-fits in paralle using
the Python multiprocessing module.
"""
analysis_list = [
al.AnalysisImaging(
dataset=result.max_log_likelihood_fit.dataset,
adapt_image_maker=al.AdaptImageMaker(result=result),
positions_likelihood=positions_likelihood,
)
for result in source_pix_result_1
]
subhalo_result_1 = slam_graph.subhalo.detection.run_1_no_subhalo(
settings_search=settings_search,
analysis_list=analysis_list,
mass_result=mass_result,
)
subhalo_grid_search_result_2 = slam_graph.subhalo.detection.run_2_grid_search(
settings_search=settings_search,
analysis_list=analysis_list,
mass_result=mass_result,
subhalo_result_1=subhalo_result_1,
subhalo_mass=af.Model(al.mp.NFWMCRLudlowSph),
grid_dimension_arcsec=3.0,
number_of_steps=2,
)
subhalo_result_3 = slam_graph.subhalo.detection.run_3_subhalo(
settings_search=settings_search,
analysis_list=analysis_list,
subhalo_result_1=subhalo_result_1,
subhalo_grid_search_result_2=subhalo_grid_search_result_2,
subhalo_mass=af.Model(al.mp.NFWMCRLudlowSph),
)
"""
Finish.
"""
if __name__ == "__main__":
import schwimmbad
fit()