-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathifr-fusion-lr-kt0.yaml
70 lines (59 loc) · 1.76 KB
/
ifr-fusion-lr-kt0.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Sequence parameters
sequence_type: "icl_nuim.ICLNUIMSequence"
dataset_type: "TUM"
scene: "0n"
use_gt: False
pose_folder: "./treasure/orbslam2_record/lrkt0n/"
outdir: "./res/lrkt0n_ours/"
calib: [481.2, 480.0, 319.50, 239.50, 5000.0]
sequence_kwargs:
path: "./data/ICL_NUIM/lr_kt0n/"
start_frame: 0
end_frame: -1 # Run all frames
first_tq: [-1.4, 1.5, 1.5, 0.0, -1.0, 0.0, 0.0] # Starting pose
# Network parameters (network structure, etc. will be inherited from the training config)
training_hypers: "./treasure/hyper.json"
using_epoch: 600
# Separate tracking and meshing.
run_async: false
# Enable visualization
vis: True
resolution: 4
# meshing
max_n_triangles: 4e6
max_std: 0.15 # 0.06
# These two define the range of depth observations to be cropped. Unit is meter.
depth_cut_min: 0.5
depth_cut_max: 5.0
meshing_interval: 20
integrate_interval: 20
# Mapping parameters
mapping:
# Bound of the scene to be reconstructed
bound_min: [-3.5, -0.5, -2.5]
bound_max: [4.5, 3.5, 5.5]
voxel_size: 0.1
# Prune observations if detected as noise.
prune_min_vox_obs: 16
ignore_count_th: 16.0
encoder_count_th: 600.0
# Tracking parameters
tracking:
# An array defining how the camera pose is optimized.
# Each element is a dictionary:
# For example {"n": 2, "type": [['sdf'], ['rgb', 1]]} means to optimize the summation of sdf term and rgb term
# at the 1st level pyramid for 2 iterations.
iter_config:
- {"n": 10, "type": [['rgb', 2]]}
- {"n": 10, "type": [['sdf'], ['rgb', 1]]}
- {"n": 50, "type": [['sdf'], ['rgb', 0]]}
sdf:
robust_kernel: "huber"
robust_k: 5.0
subsample: 0.5
rgb:
weight: 500.0
robust_kernel: null
robust_k: 0.01
min_grad_scale: 0.0
max_depth_delta: 0.2