-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_kitti.yaml
48 lines (40 loc) · 1.18 KB
/
test_kitti.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# data
basedir: "./data/kitti_odometry/dataset/sequences"
sequence: 0
# Network parameters (network structure, etc. will be inherited from the training config)
training_hypers: "./treasure/hyper.json"
using_epoch: 600
# Separate tracking and meshing.
run_async: false
# Enable visualization
vis: false
resolution: 4
# These two define the range of depth observations to be cropped. Unit is meter.
depth_cut_min: 0.5
depth_cut_max: 5.0
meshing_interval: 20
integrate_interval: 5
# Mapping parameters
mapping:
# Bound of the scene to be reconstructed
bound_min: [-200., -800., -100.]
bound_max: [800., 800., 200.]
voxel_size: 4.
# Prune observations if detected as noise.
prune_min_vox_obs: 0
ignore_count_th: 100
encoder_count_th: 600.0
vis: False
# Tracking parameters
tracking:
# An array defining how the camera pose is optimized.
# Each element is a dictionary:
# For example {"n": 2, "type": [['sdf'], ['rgb', 1]]} means to optimize the summation of sdf term and rgb term
# at the 1st level pyramid for 2 iterations.
iter_config:
- {"n": 10, "type": [['sdf']]}
- {"n": 50, "type": [['sdf']]}
sdf:
robust_kernel: "huber"
robust_k: 5.0
subsample: 0.5