You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
A set of python scripts for remote sensing processing. All functions were created using Python 3.6
As an example, I will use a UAV-based hyperspectral image of a peatland in central-south Chile. The image have 41 bands (10 nm width) ranging form 480-880 nm and a pixel size of 10 cm. The green dots correspond to plots where measurements of biomass, species composition and carbon stock information were taken:
With our scripts you can first extract the spectra in the plots location in a few seconds
python ExtractValues.py -r peatland.tif -s plots.shp -i ID
Check out the output
N
B1
B2
B3
B4
B5
B6
B7
B8
B9
...
B32
B33
B34
B35
B36
B37
B38
B39
B40
B41
0
1.0
1509.813451
2291.564899
3109.637130
3962.194325
4674.092289
5177.553225
5526.183572
5698.716701
5730.444486
...
15122.021006
15696.353105
15488.906034
15259.373692
15370.818661
15988.557692
16801.212295
16728.998597
16846.117603
17324.593108
1
2.0
1708.011608
2617.267914
3579.341584
4624.986406
5542.596761
6221.865500
6708.542956
6970.212103
7036.433086
...
20393.572983
20991.396063
20751.881674
20494.922936
20547.978802
21333.448745
21717.872021
21661.447804
21420.735874
21518.602349
2
3.0
12.875854
211.439792
1201.264700
2444.936965
3603.781002
4468.655196
5054.639060
5373.096807
5479.100261
...
40287.680262
40283.248111
39078.153197
37895.060076
38651.953385
39584.352791
40869.073804
39726.095768
39378.668239
37695.083542
3
4.0
214.950019
852.952500
1827.763722
2946.394303
3962.429581
4700.627478
5189.396823
5428.162923
5479.461922
...
16865.061517
17382.712572
17022.812516
16595.132046
16618.242789
17052.205065
17653.929336
17440.521948
17410.552106
17704.214614
4
5.0
2704.663992
3474.524823
4291.852040
5139.117787
5834.414719
6324.879534
6673.001772
6841.418896
6859.041616
...
19038.206233
19714.628088
19361.587963
19008.547838
19256.278283
20024.457928
20623.883552
20655.435636
20865.324231
20861.972693
You can also perform a MNF transformation of the data. This function have several options, like applying Savitzky Golay filtering and brightness normalization of the spectra. The basic function is like (image resample to 2m in the example):
python MNF.py -i peatland.tif
Get the Gray-Level Co-Occurrence Matrix (GLCM) textures from an image. Here, we used the first MNF component as raster imput with a moving window of 5 X 5 pixels (default):
python GLCM.py -i peatland_MNF.tif
Finally, we can also obtain texture information from point clouds (in this case based in the UAV photogrametric point cloud) based on the Canupo algorithm proposed by This paper, which is also implemented in the CloudCompare LiDAR software. Nevertheless, both the paper and the software implement the transformation to generate poin-based classification while this python script produces texture rasters to be use in any application:
python canupo.py -i lidar.txt -s 1 5 1 -r 1
# scales: 1,2,3,4,5 m; output resolution 1 m