forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ft_channelrepair.m
389 lines (342 loc) · 14.7 KB
/
ft_channelrepair.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
function [data] = ft_channelrepair(cfg, data)
% FT_CHANNELREPAIR repairs bad or missing channels in the data by replacing them with the
% plain average of of all neighbours, by a weighted average of all neighbours, by an
% interpolation based on a surface Laplacian, or by spherical spline interpolating (see
% Perrin et al., 1989).
%
% The weighted neighbour approach cannot be used reliably to repair multiple bad channels
% that lie next to each other.
%
% Use as
% [interp] = ft_channelrepair(cfg, data)
%
% The configuration must contain
% cfg.method = 'weighted', 'average', 'spline' or 'slap' (default = 'weighted')
% cfg.badchannel = cell-array, see FT_CHANNELSELECTION for details
% cfg.missingchannel = cell-array, see FT_CHANNELSELECTION for details
% cfg.neighbours = neighbourhood structure, see also FT_PREPARE_NEIGHBOURS
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
% cfg.lambda = regularisation parameter (default = 1e-5, not for method 'distance')
% cfg.order = order of the polynomial interpolation (default = 4, not for method 'distance')
%
% If you want to reconstruct channels that are absent in your data, those channels may
% also be missing from the sensor definition (grad, elec or opto) and determining the
% neighbours is non-trivial. In that case you must use a complete sensor definition from
% another dataset or from a template.
%
% The EEG, MEG or NIRS sensor positions can be present in the data or can be specified as
% cfg.elec = structure with electrode positions, see FT_DATATYPE_SENS
% cfg.elecfile = name of file containing the electrode positions, see FT_READ_SENS
% cfg.grad = structure with gradiometer definition, see FT_DATATYPE_SENS
% cfg.gradfile = name of file containing the gradiometer definition, see FT_READ_SENS
% cfg.opto = structure with optode definition, see FT_DATATYPE_SENS
% cfg.optofile = name of file containing the optode definition, see FT_READ_SENS
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_MEGREALIGN, FT_MEGPLANAR, FT_PREPARE_NEIGHBOURS
% Copyright (C) 2004-2009, Robert Oostenveld
% Copyright (C) 2012-2013, J?rn M. Horschig, Jason Farquhar
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'nearest', 'weighted'});
% set the default configuration
cfg.badchannel = ft_getopt(cfg, 'badchannel', {});
cfg.missingchannel = ft_getopt(cfg, 'missingchannel', {});
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.method = ft_getopt(cfg, 'method', 'weighted');
cfg.lambda = ft_getopt(cfg, 'lambda', []); % subfunction will handle this
cfg.order = ft_getopt(cfg, 'order', []); % subfunction will handle this
% check if the input cfg is valid for this function
if strcmp(cfg.method, 'weighted');
cfg = ft_checkconfig(cfg, 'required', {'neighbours'});
end
% store original datatype
dtype = ft_datatype(data);
% check if the input data is valid for this function
data = ft_checkdata(data, 'datatype', 'raw', 'feedback', 'yes');
% select trials of interest
tmpcfg = [];
tmpcfg.trials = cfg.trials;
data = ft_selectdata(tmpcfg, data);
% restore the provenance information
[cfg, data] = rollback_provenance(cfg, data);
% prefer sens from cfg over sens from data
try
sens = ft_fetch_sens(cfg);
catch
sens = ft_fetch_sens(cfg, data);
end
% determine the type of data
iseeg = ft_senstype(sens, 'eeg');
ismeg = ft_senstype(sens, 'meg');
isnirs = ft_senstype(sens, 'opto');
% check if any of the channel positions contains NaNs; this happens when
% component data are backprojected to the sensor level
if any(isnan(sens.chanpos(:)))
error('The channel positions contain NaNs; this prohibits correct behavior of the function. Please replace the input channel definition with one that contains valid channel positions');
end
if ismeg && ~any(strcmp(ft_senstype(sens), {'ctf151', 'ctf275', 'bti148', 'bti248', 'babysquid74'}))
% MEG systems with only magnetometers or axial gradiometers are easy, planar systems are not
warning('be careful when using "%s" - mixing of sensor types (e.g. magnetometers and gradiometers) can lead to wrong data. Check your neighbour-structure thoroughly', ft_senstype(sens));
end
channels = ft_channelselection(cfg.badchannel, data.label);
% get selection of channels that are missing
cfg.missingchannel = [cfg.missingchannel cfg.badchannel(~ismember(cfg.badchannel, channels))];
% get the selection of channels that are bad
cfg.badchannel = channels;
% warn if weighted neighbour approach (see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=634)
if ~isempty(cfg.missingchannel) && strcmp(cfg.method, 'weighted')
warning('Reconstructing missing channels using the weighted neighbour approach is not recommended!');
end
% store the realigned data in a new structure
interp = [];
interp.label = data.label;
interp.time = data.time;
% first repair badchannels
if strcmp(cfg.method, 'weighted') || strcmp(cfg.method, 'average')
if ~isempty(cfg.badchannel)
[goodchanlabels,goodchanindcs] = setdiff(data.label,cfg.badchannel);
goodchanindcs = sort(goodchanindcs); % undo automatical sorting by setdiff
connectivityMatrix = channelconnectivity(cfg, data);
connectivityMatrix = connectivityMatrix(:, goodchanindcs); % all chans x good chans
Ntrials = length(data.trial);
Nchans = length(data.label);
repair = eye(Nchans,Nchans);
badindx = match_str(data.label, cfg.badchannel);
for k=badindx'
fprintf('repairing channel %s\n', data.label{k});
repair(k,k) = 0;
l = goodchanindcs(connectivityMatrix(k, :));
% get bad channels out
[a, b] = setdiff(data.label(l), data.label(badindx));
b = sort(b); % undo automatical sorting by setdiff
l(~ismember(find(l), b)) = [];
% get corresponding ids for sens structure
[a, b] = match_str(sens.label, data.label(l));
goodsensindx = a(b);
[a, b] = match_str(sens.label, data.label(k));
badsensindx = a(b);
fprintf('\tusing neighbour %s\n', sens.label{goodsensindx});
if strcmp(cfg.method, 'weighted')
distance = sqrt(sum((sens.chanpos(goodsensindx,:) - repmat(sens.chanpos(badsensindx, :), numel(goodsensindx), 1)).^2, 2));
elseif strcmp(cfg.method, 'average')
distance = 1;
end
repair(k,l) = (1./distance);
repair(k,l) = repair(k,l) ./ sum(repair(k,l));
end
% use sparse matrix to speed up computations
repair = sparse(repair);
% compute the repaired data for each trial
fprintf('\n');
fprintf('repairing bad channels for %i trials %d', Ntrials);
for i=1:Ntrials
fprintf('.');
interp.trial{i} = repair * data.trial{i};
end
fprintf('\n');
else
fprintf('no bad channels to repair\n');
interp.trial = data.trial;
end
if ~isempty(cfg.missingchannel)
fprintf('Interpolated missing channels will be concatenated.\n');
Nchans = length(interp.label);
Ntrials = length(interp.trial);
% interpolation missing channels
goodchanindcs = 1:numel(data.label);
for chan=1:numel(cfg.missingchannel)
interp.label{end+1} = cfg.missingchannel{chan};
% creating dummy trial data
for i=1:Ntrials
interp.trial{i}(end+1, :) = 0;
end
end
connectivityMatrix = channelconnectivity(cfg, interp);
connectivityMatrix = connectivityMatrix(:, goodchanindcs); % all chans x good chans
repair = eye(Nchans,Nchans);
missingindx = match_str(interp.label, cfg.missingchannel);
unable = [];
for k=missingindx'
fprintf('trying to reconstruct missing channel %s\n', interp.label{k});
repair(k,k) = 0;
l = goodchanindcs(connectivityMatrix(k, :));
% get bad channels out
[a, b] = setdiff(data.label(l), interp.label(missingindx));
b = sort(b); % undo automatical sorting by setdiff
l(~ismember(find(l), b)) = [];
% get corresponding ids for sens structure
[a, b] = match_str(sens.label, interp.label(l));
goodsensindx = a(b);
if isempty(goodsensindx)
fprintf('\tcannot reconstruct channel - no neighbours in the original data or in the sensor position\n');
unable = [unable k];
else
[a, b] = match_str(sens.label, interp.label(k));
badsensindx = a(b);
fprintf('\tusing neighbour %s\n', sens.label{goodsensindx});
if strcmp(cfg.method, 'weighted')
distance = sqrt(sum((sens.chanpos(goodsensindx,:) - repmat(sens.chanpos(badsensindx, :), numel(goodsensindx), 1)).^2, 2));
elseif strcmp(cfg.method, 'average')
distance = 1;
end
repair(k,l) = (1./distance);
repair(k,l) = repair(k,l) ./ sum(repair(k,l));
end
end
% use sparse matrix to speed up computations
repair = sparse(repair);
fprintf('\n');
% compute the missing data for each trial and remove those could not be
% reconstructed
fprintf('\n');
fprintf('interpolating missing channel for %i trials %d', Ntrials);
for i=1:Ntrials
fprintf('.');
interp.trial{i} = repair * interp.trial{i};
interp.trial{i}(unable, :) = [];
end
interp.label(unable) = [];
fprintf('\n');
end
elseif strcmp(cfg.method, 'spline') || strcmp(cfg.method, 'slap')
if ~isempty(cfg.badchannel) || ~isempty(cfg.missingchannel)
fprintf('Spherical spline and surface Laplacian interpolation will treat bad and missing channels the same. Missing channels will be concatenated at the end of your data structure.\n');
end
% subselect only those sensors that are in the data or in badchannel or missingchannel
badchannels = union(cfg.badchannel, cfg.missingchannel);
sensidx = ismember(sens.label, union(data.label, badchannels));
label = sens.label(sensidx);
chanpos = sens.chanpos(sensidx, :);
try, chanori = sens.chanori(sensidx, :); end
try, chantype = sens.chantype(sensidx, :); end
try, chanunit = sens.chanunit(sensidx, :); end
fprintf('Checking spherical fit... ');
[c, r] = fitsphere(chanpos);
d = chanpos - repmat(c, numel(find(sensidx)), 1);
d = sqrt(sum(d.^2, 2));
d = mean(abs(d) / r);
if abs(d-1) > 0.1
warning('bad spherical fit (residual: %.2f%%). The interpolation will be inaccurate.', 100*(d-1));
elseif abs(d-1) < 0.01
fprintf('perfect spherical fit (residual: %.1f%%)\n', 100*(d-1));
else
fprintf('good spherical fit (residual: %.1f%%)\n', 100*(d-1));
end
if strcmp(cfg.method, 'slap')
warning('''slap'' method is not fully supported - be careful in interpreting your results');
end
% move missing channels to the end
missidx = find(ismember(label, cfg.missingchannel));
label(end+1:end+numel(missidx)) = label(missidx);
label(missidx) = [];
chanpos(end+1:end+numel(missidx), :) = chanpos(missidx, :);
chanpos(missidx, :) = [];
% select good channels only for interpolation
[goodchanlabels,goodchanindcs] = setdiff(label,badchannels);
allchans = false;
if isempty(goodchanindcs)
goodchanindcs = 1:numel(label);
allchans = true;
warning('No good channels found - interpolating based on all channels');
end
% undo automatical sorting by setdiff
goodchanindcs = sort(goodchanindcs);
% only take good channels that are in data (and remember how they are sorted)
[dataidx, sensidx] = match_str(data.label, label(goodchanindcs));
% interpolate
fprintf('computing weight matrix...');
repair = sphericalSplineInterpolate(chanpos(goodchanindcs(sensidx),:)',chanpos', cfg.lambda, cfg.order, cfg.method);
fprintf(' done!\n');
if ~allchans
% only use the rows corresponding to the channels that actually need interpolation
repair(goodchanindcs(sensidx),:) = 0;
for k = 1:numel(sensidx)
i = strcmp(label(goodchanindcs(sensidx(k))), label(goodchanindcs(sensidx)));
repair(goodchanindcs(sensidx(k)), i) = 1;
end
end % else all rows need to be interpolated
% compute the missing data for each trial and remove those could not be
% reconstructed
Ntrials = length(data.trial);
fprintf('\n');
fprintf('interpolating channels for %i trials %d', Ntrials);
for i=1:Ntrials
fprintf('.');
interp.trial{i} = repair * data.trial{i}(dataidx, :);
end
fprintf('\n');
% update channels labels due to reordering by
interp.label = label;
else
error('unknown method "%s" for interpolation', cfg.method);
end
% copy the additional fields over to the newly interpolated data
datafields = fieldnames(data);
interpfields = fieldnames(interp);
exfields = setdiff(datafields,interpfields);
for f = 1:length(exfields)
interp.(exfields{f}) = data.(exfields{f});
end
% re-insert the sensor array
if iseeg
interp.elec = sens;
elseif ismeg
interp.grad = sens;
elseif isnirs
interp.opto = sens;
end
% convert back to input type if necessary
switch dtype
case 'timelock'
interp = ft_checkdata(interp, 'datatype', 'timelock');
otherwise
% keep the output as it is
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
% rename the output variable to accomodate the savevar postamble
data = interp;
ft_postamble provenance data
ft_postamble history data
ft_postamble savevar data