-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_EventAnalysis_AllFrames_no_of.py
227 lines (170 loc) · 8.94 KB
/
main_EventAnalysis_AllFrames_no_of.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import pandas as pd
import numpy as np
from tqdm import tqdm
# Parameters
PAT_NOW = "S23_199"
user_name = "jgopal"
FACEDX_CSV_DIRECTORY = os.path.abspath(f'/home/{user_name}/NAS/Analysis/outputs_Combined/{PAT_NOW}/')
OUTPUT_DIRECTORY = os.path.abspath(f'/home/{user_name}/NAS/Analysis/outputs_EventAnalysis/')
OUTPUT_CSV = os.path.join(OUTPUT_DIRECTORY, f'combined_events_{PAT_NOW}.csv')
META_DATA_CSV_PATH = os.path.join(os.path.abspath(f'/home/{user_name}/NAS/Analysis/outputs_EventAnalysis/'), f'chosen_thresholds_{PAT_NOW}.csv')
# Create the output directory if it doesn't exist
os.makedirs(OUTPUT_DIRECTORY, exist_ok=True)
# Load the thresholds from the meta data CSV
thresholds_df = pd.read_csv(META_DATA_CSV_PATH)
EVENT_THRESHOLDS = dict(zip(thresholds_df['Emotion'], thresholds_df['Threshold']))
MIN_EVENT_LENGTH = 2 # Minimum length of each event in frames
MERGE_TIME = 3 # Maximum frames apart to consider merging events
FACEDX_FPS = 5 # FPS after down sampling
VIDEO_FPS = 30 # FPS of original video (for time stamps!)
# Function to detect and merge events
def detect_events(emotion_df, au_df):
events = []
for emotion, threshold in EVENT_THRESHOLDS.items():
emotion_values = emotion_df[emotion].values
frames = emotion_df['frame'].values
# Identify events and get indices
above_threshold = emotion_values >= threshold
event_indices = np.nonzero(above_threshold)
event_indices = event_indices[0]
# Skip if too few events found
if len(event_indices) < MIN_EVENT_LENGTH:
continue
# Merge events closeby
# Identify events in list that are within MERGE_TIME
merge_threshold = np.diff(event_indices)
merge_threshold = np.concatenate((merge_threshold, np.array([merge_threshold[-1]])))
merge_threshold = (merge_threshold < MERGE_TIME)*1
# Add start index of first event
start_indices = [event_indices[0]]
end_indices = []
last_value = merge_threshold[0]
#If event is stand alone, add end index
if last_value == 0:
end_indices.append(event_indices[0])
# Iterate through events and mark start and end times, merging as you go
for merge_idx, merge_value in enumerate(merge_threshold):
if merge_idx == 0: # Skip first index as already accounted for
continue
elif last_value == 1 and merge_value == last_value: # If last and merge values are 1, merge events
continue
elif last_value == 1 and merge_value == 0: # If merge value 0 when last value was 1, then at end of merging, add end index and also add this standalone event
end_indices.append(event_indices[merge_idx])
elif merge_value == 0: # If merge value and last value are 0, add stand alone event
start_indices.append(event_indices[merge_idx])
end_indices.append(event_indices[merge_idx])
elif last_value == 0 and merge_value == 1: # If merge value is 1 and last is 0, start of new merge
start_indices.append(event_indices[merge_idx])
last_value = merge_value # Keep track of last value
# NEED TO FIX SO THAT END EVENTS BETWEEN FILES MERGE IF INDICATED
if len(start_indices) > len(end_indices) and last_value == 1:
loop_event = 1
end_indices.append(event_indices[-1])
# Remove Events Less than MIN_EVENT_LENGTH
end_indices = np.array(end_indices)
start_indices = np.array(start_indices)
event_length = end_indices - start_indices
end_indices = end_indices[event_length >= MIN_EVENT_LENGTH - 1]
start_indices = start_indices[event_length >= MIN_EVENT_LENGTH - 1]
# Skip if no more events
if len(start_indices) == 0:
continue
# Ensure lists are same size and in correct order
assert len(start_indices) == len(end_indices)
assert start_indices[0] < end_indices[0]
assert start_indices[-1] < end_indices[-1]
# Get event start time stamps
minutes = np.floor_divide(np.floor_divide(frames[start_indices], VIDEO_FPS), 60)
seconds = np.floor_divide(frames[start_indices], VIDEO_FPS) - (60 * minutes)
hours = np.floor_divide(minutes, 60)
minutes = minutes.astype(int)
seconds = seconds.astype(int)
hours = hours.astype(int)
start_times = []
for hour_val, minute_val, second_val in zip(hours, minutes, seconds):
start_times.append( f"{hour_val:02d}:{minute_val:02d}:{second_val:02d}")
# Get event durations
durations = np.round(np.divide(end_indices - start_indices + 1, FACEDX_FPS), 1)
# Convert frame columns to integers for consistent comparison
au_df['frame'] = au_df['frame'].astype(int)
emotion_df['frame'] = emotion_df['frame'].astype(int)
# Iterate through each event to add inbetween frames
for event_idx, _ in enumerate(start_indices):
event_data = {
'Filename': video_file,
'Start Time': start_times[event_idx],
'Duration in Seconds': durations[event_idx], # Ensure duration is set initially
'Event Type': emotion,
'End Frame': frames[end_indices[event_idx]],
}
for frame_idx in range(start_indices[event_idx], end_indices[event_idx] + 1):
# Use integer comparison for frames
frame_au = au_df[au_df['frame'] == int(frames[frame_idx])].drop(['frame', 'timestamp', 'success'], axis=1)
frame_emotion = emotion_df[emotion_df['frame'] == int(frames[frame_idx])].drop(['frame', 'timestamp', 'success'],axis=1)
# Check if the frame exists in the data, otherwise skip this frame
if frame_au.empty or frame_emotion.empty:
continue
frame_data = event_data.copy()
frame_data['Frame'] = frames[frame_idx]
frame_data['Frame Num'] = (frame_idx - start_indices[event_idx]) + 1
frame_data['Time'] = np.round(np.divide((frame_data['Frame Num'] - 1), FACEDX_FPS), 1)
frame_data.update(frame_au.to_dict(orient='records')[0] if not frame_au.empty else {})
frame_data.update(frame_emotion.to_dict(orient='records')[0] if not frame_emotion.empty else {})
events.append(frame_data)
return events
# Process each video file
all_events = []
# Loop through the subfolders in the given CSV directory
for subfolder in tqdm(os.listdir(FACEDX_CSV_DIRECTORY)):
video_file = subfolder
# Load emotion and AU CSVs
emotion_csv_path = os.path.join(FACEDX_CSV_DIRECTORY, subfolder, 'outputs_hse.csv')
au_csv_path = os.path.join(FACEDX_CSV_DIRECTORY, subfolder, 'outputs_ogau.csv')
if not os.path.exists(emotion_csv_path) or not os.path.exists(au_csv_path):
print(f"Skipping {video_file}: missing CSV files.")
continue
if os.path.getsize(emotion_csv_path) == 0 or os.path.getsize(au_csv_path) == 0:
print(f"Skipping {video_file}: empty CSV files.")
continue
try:
emotion_df = pd.read_csv(emotion_csv_path)
au_df = pd.read_csv(au_csv_path)
except pd.errors.EmptyDataError:
print(f"Skipping {video_file}: empty CSV files.")
continue
except OSError as e:
print(f"Skipping {video_file}: OSError - {e}")
continue
# Detect events in the video
video_events = detect_events(emotion_df, au_df)
all_events.extend(video_events)
# Remove 'End Frame' before saving
for event in all_events:
event.pop('End Frame', None)
# Save all events to a single CSV file
events_df = pd.DataFrame(all_events)
events_df.to_csv(OUTPUT_CSV, index=False)
print(f"Events saved to {OUTPUT_CSV}")
# Load the saved CSV into a DataFrame for post-processing
events_df = pd.read_csv(OUTPUT_CSV)
# Step 1: Assign each event a sequential number based on its order in the DataFrame (not by event type)
clip_values = []
event_counter = 1 # Start a global counter across all events
# Iterate over the rows to assign a sequential number to each event
for i in range(len(events_df)):
event_type = events_df.loc[i, 'Event Type']
# Create the Clip name in the format {Event Type}_{Number}.mp4
clip_name = f"{event_type}_{event_counter}.mp4"
clip_values.append(clip_name)
# Increment the counter for each new event
# Check for event change by comparing the current and next rows
if i == len(events_df) - 1 or \
events_df.loc[i, 'Filename'] != events_df.loc[i+1, 'Filename'] or \
events_df.loc[i, 'Start Time'] != events_df.loc[i+1, 'Start Time']:
event_counter += 1
# Add the "Clip Name" column to the DataFrame
events_df['Clip Name'] = clip_values
# Save the updated DataFrame back to the CSV
events_df.to_csv(OUTPUT_CSV, index=False)
print(f"Post-processing complete. Events with corrected durations saved to {OUTPUT_CSV}")