-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_GroupRPlot.py
445 lines (344 loc) · 16.1 KB
/
main_GroupRPlot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import os
import pickle
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import warnings
from scipy.stats import pearsonr, ttest_1samp
from scipy.stats import spearmanr
# Paths and configurations
RUNTIME_VAR_PATH = '/home/jgopal/NAS/Analysis/AudioFacialEEG/Runtime_Vars/'
RESULTS_PATH_BASE = '/home/jgopal/NAS/Analysis/AudioFacialEEG/Results/Group/'
PREFIX_1 = "OGAU_L_"
PREFIX_1_PAIN = "OGAUHSE_L_"
PREFIX_2 = "OF_L_"
LABEL_1 = "FaceDx"
LABEL_2 = "OpenFace"
METRICS = ['Mood', 'Depression', 'Anxiety', 'Hunger', 'Pain']
SHOW_PREFIX_2 = True
pd.options.mode.chained_assignment = None
warnings.filterwarnings('ignore')
os.makedirs(RESULTS_PATH_BASE, exist_ok=True)
# Load variable
def load_var(variable_name, RUNTIME_VAR_PATH):
with open(os.path.join(RUNTIME_VAR_PATH, f'{variable_name}.pkl'), 'rb') as file:
return pickle.load(file)
# Detect all patients
def detect_patients():
files = os.listdir(RUNTIME_VAR_PATH)
patient_names = set()
for file in files:
if file.startswith('predictions_S_'):
parts = file.split('_')
patient_name = '_'.join(parts[1:3])
patient_names.add(patient_name)
return list(patient_names)
def concordance_correlation_coefficient(y_true, y_pred):
mean_true = np.mean(y_true)
mean_pred = np.mean(y_pred)
var_true = np.var(y_true)
var_pred = np.var(y_pred)
cov = np.mean((y_true - mean_true) * (y_pred - mean_pred))
ccc = (2 * cov) / (var_true + var_pred + (mean_true - mean_pred)**2)
return ccc
def permutation_test_r2(y_true, y_pred, num_permutations=100):
"""
Simple permutation test using R^2:
1. Compute real_r2 = Pearson’s R^2 on (y_true, y_pred).
2. Shuffle y_true multiple times. For each shuffle, compute r^2.
3. p-value = fraction of shuffles that have r^2 >= real_r2.
"""
# Compute actual R^2
real_r, _ = pearsonr(y_true, y_pred)
real_r2 = real_r ** 2
count = 0
for _ in range(num_permutations):
y_shuffled = np.random.permutation(y_true)
shuffle_r, _ = pearsonr(y_shuffled, y_pred)
if (shuffle_r ** 2) >= real_r2:
count += 1
p_value = count / num_permutations
return real_r2, p_value
# Preprocess mood tracking
def preprocess_mood_tracking(PAT_SHORT_NAME):
MOOD_TRACKING_SHEET_PATH = f'/home/jgopal/NAS/Analysis/AudioFacialEEG/Behavioral Labeling/Mood_Tracking.xlsx'
df = pd.read_excel(MOOD_TRACKING_SHEET_PATH, sheet_name=f'{PAT_SHORT_NAME}')
df = df.replace('', np.nan).replace(' ', np.nan).fillna(value=np.nan)
df['Datetime'] = pd.to_datetime(df['Datetime']).dt.strftime('%-m/%-d/%Y %H:%M:%S')
df = df.drop(columns=['Notes'], errors='ignore')
return df
# Function to check if a patient meets the inclusion criteria
def meets_inclusion_criteria(df, metric):
if metric not in df.columns:
return False
series_clean = df[metric].dropna()
# 1) Number of self-reports >= 5
if len(series_clean) < 5:
return False
# 2) Median score > 0
if series_clean.median() <= 0:
return False
# 3) Score range >= 5 (for 0–10 scale)
if (series_clean.max() - series_clean.min()) < 5:
return False
# 4) Number of unique values >= 3
if len(series_clean.unique()) < 3:
return False
return True
# Detect patients
patients = detect_patients()
for metric in METRICS:
r2_values_prefix_1 = []
r2_values_prefix_2 = []
r2_values_prefix_1_included = []
r2_values_prefix_2_included = []
p_values_prefix_1 = []
p_values_prefix_2 = []
p_values_prefix_1_included = []
p_values_prefix_2_included = []
spearman_values_prefix_1_included = []
spearman_values_prefix_2_included = []
ccc_values_prefix_1_included = []
ccc_values_prefix_2_included = []
variance_list = []
sample_size_list = []
random_distributions = []
print(f"\nResults for {metric.capitalize()}:")
for patient in patients:
try:
# Preprocess mood tracking for the patient
df_moodTracking = preprocess_mood_tracking(patient)
# Load predictions
predictions_prefix_1 = load_var(f'predictions_{patient}_{PREFIX_1_PAIN if metric == "Pain" else PREFIX_1}', RUNTIME_VAR_PATH)[metric]
predictions_prefix_2 = load_var(f'predictions_{patient}_{PREFIX_2}', RUNTIME_VAR_PATH)[metric]
y_true_1 = predictions_prefix_1['y_true']
preds_1 = predictions_prefix_1['preds'][predictions_prefix_1['best_time_radius']]
# Calculate R^2 + Perm test - prefix 1
real_r2_1, p_value_1 = permutation_test_r2(y_true_1, preds_1, num_permutations=100)
if np.isnan(real_r2_1):
print(f"{patient} excluded due to NaN values.")
continue
print(f"[{patient} -- {metric} -- {PREFIX_1_PAIN if metric == 'Pain' else PREFIX_1}] Permutation Test R^2 = {real_r2_1:.3f}, p = {p_value_1:.3f}")
y_true_2 = predictions_prefix_2['y_true']
preds_2 = predictions_prefix_2['preds'][predictions_prefix_2['best_time_radius']]
# Calculate R^2 + Perm test - prefix 2
real_r2_2, p_value_2 = permutation_test_r2(y_true_2, preds_2, num_permutations=100)
if np.isnan(real_r2_2):
print(f"{patient} excluded due to NaN values.")
continue
print(f"[{patient} -- {metric} -- {PREFIX_2}] Permutation Test R^2 = {real_r2_2:.3f}, p = {p_value_2:.3f}")
if meets_inclusion_criteria(df_moodTracking, metric):
r2_values_prefix_1_included.append(real_r2_1)
r2_values_prefix_2_included.append(real_r2_2)
p_values_prefix_1_included.append(p_value_1)
p_values_prefix_2_included.append(p_value_2)
# Spearman Correlation
spearman_1, _ = spearmanr(y_true_1, preds_1)
spearman_2, _ = spearmanr(y_true_2, preds_2)
spearman_values_prefix_1_included.append(spearman_1)
spearman_values_prefix_2_included.append(spearman_2)
# CCC
ccc_1 = concordance_correlation_coefficient(y_true_1, preds_1)
ccc_2 = concordance_correlation_coefficient(y_true_2, preds_2)
ccc_values_prefix_1_included.append(ccc_1)
ccc_values_prefix_2_included.append(ccc_2)
# Variance and sample size
variance = np.var(df_moodTracking[metric].dropna())
sample_size = len(df_moodTracking[metric].dropna())
variance_list.append(variance)
sample_size_list.append(sample_size)
r2_values_prefix_1.append(real_r2_1)
p_values_prefix_1.append(p_value_1)
r2_values_prefix_2.append(real_r2_2)
p_values_prefix_2.append(p_value_2)
except Exception as e:
print(f"Error processing {patient}: {e}")
continue
# Scatterplot: x = sample size, y = variance, color = R^2
plt.figure(figsize=(10, 6))
scatter = plt.scatter(sample_size_list, variance_list, c=r2_values_prefix_1, cmap='viridis', s=100)
plt.colorbar(scatter, label='$R^2$')
plt.xlabel('Sample Size')
plt.ylabel('Variance')
plt.title(f'{metric.capitalize()} - Variance vs. Sample Size')
plt.savefig(os.path.join(RESULTS_PATH_BASE, f'{metric}_scatter_variance_sampleSize.png'), bbox_inches='tight')
plt.close()
# Create and save the group R^2 boxplot
data = [r2_values_prefix_1]
labels = [LABEL_1]
if SHOW_PREFIX_2:
data.append(r2_values_prefix_2)
labels.append(LABEL_2)
plt.figure(figsize=(10, 6))
plt.boxplot(data, vert=False, labels=labels, showmeans=True,
meanprops={'marker': 'o', 'markerfacecolor': 'red', 'markersize': 10})
# 1) Overlay points for prefix_1
group_1_y = 1
jitter_amount = 0.05
for r2_val, p_val in zip(r2_values_prefix_1, p_values_prefix_1):
color = 'red' if p_val < 0.05 else 'black'
# Slight random vertical jitter so points don’t overlap exactly
y_jittered = group_1_y + np.random.uniform(-jitter_amount, jitter_amount)
plt.scatter(r2_val, y_jittered, color=color, s=60, alpha=0.7)
# 2) Overlay points for prefix_2 (only if SHOW_PREFIX_2 is True)
if SHOW_PREFIX_2:
group_2_y = 2
for r2_val, p_val in zip(r2_values_prefix_2, p_values_prefix_2):
color = 'red' if p_val < 0.05 else 'black'
y_jittered = group_2_y + np.random.uniform(-jitter_amount, jitter_amount)
plt.scatter(r2_val, y_jittered, color=color, s=60, alpha=0.7)
plt.title(f'Group $R^2$ for {metric.capitalize()}, N = {len(r2_values_prefix_1)}', fontsize=24)
plt.xlabel("$R^2$", fontsize=18)
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
plt.savefig(os.path.join(RESULTS_PATH_BASE, f'{metric}_groupR2_ALL.png'), bbox_inches='tight')
plt.close()
# Create and save the violin plot
plt.figure(figsize=(10, 6))
plt.violinplot(data, vert=False, showmeans=True, showmedians=True)
# Overlay points for prefix_1 at y=1
group_1_y = 1
for r2_val, p_val in zip(r2_values_prefix_1, p_values_prefix_1):
color = 'red' if p_val < 0.05 else 'black'
plt.scatter(r2_val, group_1_y + np.random.uniform(-0.05, 0.05),
color=color, s=60, alpha=0.7)
# Overlay points for prefix_2 at y=2
if SHOW_PREFIX_2:
group_2_y = 2
for r2_val, p_val in zip(r2_values_prefix_2, p_values_prefix_2):
color = 'red' if p_val < 0.05 else 'black'
plt.scatter(r2_val, group_2_y + np.random.uniform(-0.05, 0.05),
color=color, s=60, alpha=0.7)
if SHOW_PREFIX_2:
plt.yticks([1, 2], labels)
else:
plt.yticks([1], labels)
plt.title(f'{metric.capitalize()} - Violin Plot of $R^2$', fontsize=24)
plt.xlabel("$R^2$", fontsize=18)
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
plt.savefig(os.path.join(RESULTS_PATH_BASE, f'{metric}_groupR2_violin_ALL.png'), bbox_inches='tight')
plt.close()
# ONLY MEETING INCLUSION CRITERIA
# Create and save the group R^2 boxplot
data = [r2_values_prefix_1_included]
labels = [LABEL_1]
if SHOW_PREFIX_2:
data.append(r2_values_prefix_2_included)
labels.append(LABEL_2)
plt.figure(figsize=(10, 6))
plt.boxplot(data, vert=False, labels=labels, showmeans=True,
meanprops={'marker': 'o', 'markerfacecolor': 'red', 'markersize': 10})
# Overlay each included patient's R^2 with color by p < 0.05
group_1_y = 1
jitter_amount = 0.05
# 1) Group 1 points
for r2_val, p_val in zip(r2_values_prefix_1_included, p_values_prefix_1_included):
color = 'red' if p_val < 0.05 else 'black'
y_jittered = group_1_y + np.random.uniform(-jitter_amount, jitter_amount)
plt.scatter(r2_val, y_jittered, color=color, s=60, alpha=0.7)
# 2) Group 2 points (only if SHOW_PREFIX_2 is True)
if SHOW_PREFIX_2:
group_2_y = 2
for r2_val, p_val in zip(r2_values_prefix_2_included, p_values_prefix_2_included):
color = 'red' if p_val < 0.05 else 'black'
y_jittered = group_2_y + np.random.uniform(-jitter_amount, jitter_amount)
plt.scatter(r2_val, y_jittered, color=color, s=60, alpha=0.7)
plt.title(f'Group $R^2$ for {metric.capitalize()}, N = {len(r2_values_prefix_1_included)}', fontsize=24)
plt.xlabel("$R^2$", fontsize=18)
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
plt.savefig(os.path.join(RESULTS_PATH_BASE, f'{metric}_groupR2.png'), bbox_inches='tight')
plt.close()
# Create and save the violin plot
plt.figure(figsize=(10, 6))
plt.violinplot(data, vert=False, showmeans=True, showmedians=True)
# Overlay each included patient's R^2 with color by p < 0.05
group_1_y = 1
jitter_amount = 0.05
# 1) Group 1 points
for r2_val, p_val in zip(r2_values_prefix_1_included, p_values_prefix_1_included):
color = 'red' if p_val < 0.05 else 'black'
y_jittered = group_1_y + np.random.uniform(-jitter_amount, jitter_amount)
plt.scatter(r2_val, y_jittered, color=color, s=60, alpha=0.7)
# 2) Group 2 points (only if SHOW_PREFIX_2 is True)
if SHOW_PREFIX_2:
group_2_y = 2
for r2_val, p_val in zip(r2_values_prefix_2_included, p_values_prefix_2_included):
color = 'red' if p_val < 0.05 else 'black'
y_jittered = group_2_y + np.random.uniform(-jitter_amount, jitter_amount)
plt.scatter(r2_val, y_jittered, color=color, s=60, alpha=0.7)
if SHOW_PREFIX_2:
plt.yticks([1, 2], labels)
else:
plt.yticks([1], labels)
plt.title(f'{metric.capitalize()} - Violin Plot of $R^2$', fontsize=24)
plt.xlabel("$R^2$", fontsize=18)
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
plt.savefig(os.path.join(RESULTS_PATH_BASE, f'{metric}_groupR2_violin.png'), bbox_inches='tight')
plt.close()
# -------------------------------------------------------
# SPEARMAN’S RHO: BOX PLOT (INCLUDED PATIENTS ONLY)
# -------------------------------------------------------
data_spearman = [spearman_values_prefix_1_included]
labels_spearman = [LABEL_1]
if SHOW_PREFIX_2:
data_spearman.append(spearman_values_prefix_2_included)
labels_spearman.append(LABEL_2)
plt.figure(figsize=(10, 6))
plt.boxplot(data_spearman, vert=False, labels=labels_spearman, showmeans=True,
meanprops={'marker': 'o', 'markerfacecolor': 'red', 'markersize': 10})
plt.title(f'Spearman Correlation for {metric} (Included), N = {len(spearman_values_prefix_1_included)}', fontsize=18)
plt.xlabel("Spearman's ρ", fontsize=14)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.savefig(os.path.join(RESULTS_PATH_BASE, f'{metric}_spearman_included_box.png'), bbox_inches='tight')
plt.close()
# -------------------------------------------------------
# SPEARMAN’S RHO: VIOLIN PLOT (INCLUDED PATIENTS ONLY)
# -------------------------------------------------------
plt.figure(figsize=(10, 6))
plt.violinplot(data_spearman, vert=False, showmeans=True, showmedians=True)
if SHOW_PREFIX_2:
plt.yticks([1, 2], labels_spearman)
else:
plt.yticks([1], labels_spearman)
plt.title(f'{metric}: Spearman (Included)', fontsize=18)
plt.xlabel("Spearman's ρ", fontsize=14)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.savefig(os.path.join(RESULTS_PATH_BASE, f'{metric}_spearman_included_violin.png'), bbox_inches='tight')
plt.close()
# -------------------------------------------------------
# CCC: BOX PLOT (INCLUDED PATIENTS ONLY)
# -------------------------------------------------------
data_ccc = [ccc_values_prefix_1_included]
labels_ccc = [LABEL_1]
if SHOW_PREFIX_2:
data_ccc.append(ccc_values_prefix_2_included)
labels_ccc.append(LABEL_2)
plt.figure(figsize=(10, 6))
plt.boxplot(data_ccc, vert=False, labels=labels_ccc, showmeans=True,
meanprops={'marker': 'o', 'markerfacecolor': 'red', 'markersize': 10})
plt.title(f'CCC for {metric} (Included), N = {len(ccc_values_prefix_1_included)}', fontsize=18)
plt.xlabel("Concordance Correlation Coefficient", fontsize=14)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.savefig(os.path.join(RESULTS_PATH_BASE, f'{metric}_ccc_included_box.png'), bbox_inches='tight')
plt.close()
# -------------------------------------------------------
# CCC: VIOLIN PLOT (INCLUDED PATIENTS ONLY)
# -------------------------------------------------------
plt.figure(figsize=(10, 6))
plt.violinplot(data_ccc, vert=False, showmeans=True, showmedians=True)
if SHOW_PREFIX_2:
plt.yticks([1, 2], labels_ccc)
else:
plt.yticks([1], labels_ccc)
plt.title(f'{metric}: CCC (Included)', fontsize=18)
plt.xlabel("Concordance Correlation Coefficient", fontsize=14)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.savefig(os.path.join(RESULTS_PATH_BASE, f'{metric}_ccc_included_violin.png'), bbox_inches='tight')
plt.close()