-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_HSEmotion_debug.py
248 lines (189 loc) · 8.95 KB
/
main_HSEmotion_debug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from utils import *
from utilsHSE import *
import os
import time
import datetime
import cv2
import torch
use_cuda = torch.cuda.is_available()
device = 'cuda' if use_cuda else 'cpu'
from facenet_pytorch import MTCNN
mtcnn = MTCNN(keep_all=True, post_process=False, min_face_size=40, device=device)
from hsemotion.facial_emotions import HSEmotionRecognizer
def detect_face(frame):
bounding_boxes, probs = mtcnn.detect(frame, landmarks=False)
bounding_boxes=bounding_boxes[probs>0.9]
return bounding_boxes
fer=HSEmotionRecognizer(model_name='enet_b0_8_best_vgaf',device=device)
def hse_preds_new(faces, model, model_type='mobilenet_7.h5'):
#import pdb; pdb.set_trace()
# faces = preprocessing_function(faces)
# scores=model.predict(faces)
# Check if a GPU is available and use it if possible
device_name = tf.test.gpu_device_name()
if device_name != '' and '/device:GPU' in device_name:
with tf.device('/device:GPU:0'):
scores = model.predict(faces)
scores = scores.cpu()
else:
scores = model.predict(faces)
return scores
"""
Full Pipeline - HSEmotion
"""
# Set the parameters
BATCH_SIZE = 50000
MODEL_TYPE = 'mobilenet_7.h5'
INPUT_SIZE = (224, 224)
VIDEO_DIRECTORY = os.path.abspath('inputs/')
FPS_EXTRACTING = 5 # we'll extract 5 fps
SAVE_PATH_FOLDER = lambda video_name: os.path.join(os.path.abspath('outputs_HSEmotion'), f'{video_name}')
SAVE_PATH = lambda save_path_folder, starter_frame: os.path.join(save_path_folder, f'{starter_frame}.csv')
# Get the list of all videos in the given directory
all_videos = [vid for vid in os.listdir(VIDEO_DIRECTORY) if vid[0:1] != '.']
# For timing estimation
valid_videos = [vid for vid in all_videos if os.path.isfile(os.path.join(VIDEO_DIRECTORY, vid))]
unprocessed_videos = [vid for vid in valid_videos if not(os.path.exists(SAVE_PATH_FOLDER(vid)))]
num_vids = len(unprocessed_videos)
start_time = time.time()
TIMING_VERBOSE = True # yes/no do we print times for sub-processes within videos?
# Loop through all videos
for i in all_videos:
# Process the entirety of each video via a while loop!
video_path = os.path.join(VIDEO_DIRECTORY, i)
if not(os.path.isfile(video_path)):
# Case: Path isn't a file (usually happens if it's a folder)
print(f'Not a valid path: {video_path}')
else:
# We know the path is to a file
frame_now = 0 # this is what we save in outputs file
frame_printing = 0 # this is the "real" frame we are at
fps = get_fps(path=video_path, extracting_fps=FPS_EXTRACTING) # FPS at which we're extracting
save_path_folder = SAVE_PATH_FOLDER(i)
if os.path.exists(save_path_folder):
# Case: output folder already exists
print(f'Skipping Video {i}: Output Folder Already Exists!')
else:
# We know the output folder does NOT exist already
os.mkdir(save_path_folder)
save_path_now = SAVE_PATH(save_path_folder, 0)
if TIMING_VERBOSE:
time1 = time.time()
# Extract video frames
capture = cv2.VideoCapture(video_path)
ims = []
real_fps = math.ceil(capture.get(cv2.CAP_PROP_FPS)) # real FPS of the video
frame_division = real_fps // FPS_EXTRACTING # Helps us only analyze 5 fps (or close to it)
running = True
frameNr = 0 # Track frame number
while running:
# Extract frames continuously
success, frame = capture.read()
if success:
if frameNr % frame_division == 0:
# We are only saving SOME frames (e.g. extracting 5 fps)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
ims.append(frame)
if (frameNr % BATCH_SIZE == 0) and (frameNr > 0):
# Let's do analysis, save results, and reset ims!
ims = np.array(ims)
print(f"Extracted Ims, Frames {frame_printing} to {frame_printing+BATCH_SIZE} in {i}")
if TIMING_VERBOSE:
time2 = time.time()
print('Time: ', time2 - time1)
# Batch now -- number of frames actually extracted (useful at end of video)
BATCH_NOW = ims.shape[0]
# --- DEBUG ---
for one_im in ims:
bounding_boxes=detect_face(one_im)
print('testing in one_im')
for bbox in bounding_boxes:
box = bbox.astype(int)
x1,y1,x2,y2=box[0:4]
face_img=one_im[y1:y2,x1:x2,:]
emotion,scores=fer.predict_emotions(face_img,logits=True)
print(emotion,scores)
# Face detection
faces, is_null = extract_faces_mtcnn(ims, INPUT_SIZE)
print(f"Detected Faces")
if TIMING_VERBOSE:
time3 = time.time()
print('Time: ', time3 - time2)
# Load the relevant network and get its predictions
model = get_emotion_predictor(MODEL_TYPE)
scores_real = hse_preds(faces, model, model_type=MODEL_TYPE)
scores_real[is_null == 1] = 0 # clear the predictions from frames w/o faces!
print("Got Network Predictions")
if TIMING_VERBOSE:
time4 = time.time()
print('Time: ', time4 - time3)
# Save outputs to a CSV
frames = np.arange(frame_now, frame_now + BATCH_NOW).reshape(BATCH_NOW, 1)
csv_save_HSE(labels=scores_real, is_null=is_null, frames=frames, save_path=save_path_now, fps=fps)
print(f"Saved CSV to {save_path_now}!")
frame_now = frame_now + BATCH_NOW
frame_printing = frame_printing + BATCH_SIZE
# Reset ims for the next batch!
ims = []
# Reset timing
if TIMING_VERBOSE:
time1 = time.time()
else:
# We're out of frames!
running = False
# Let's do analysis, save results, and reset ims!
ims = np.array(ims)
print(f"Extracted Ims, Frames {frame_printing} to {frame_printing+BATCH_SIZE} in {i}")
if TIMING_VERBOSE:
time2 = time.time()
print('Time: ', time2 - time1)
# Batch now -- number of frames actually extracted (useful at end of video)
BATCH_NOW = ims.shape[0]
# --- DEBUG ---
faces = np.zeros([ims.shape[0], INPUT_SIZE[0], INPUT_SIZE[1], 3], dtype=np.uint8)
for enum_now, one_im in enumerate(ims):
bounding_boxes=detect_face(one_im)
bbox = bounding_boxes[0]
box = bbox.astype(int)
x1,y1,x2,y2=box[0:4]
face_img=one_im[y1:y2,x1:x2,:]
face_img=cv2.resize(face_img, INPUT_SIZE)
faces[enum_now, :, :, :] = face_img
emotions,scores=fer.predict_multi_emotions(faces,logits=True)
print(emotions,scores)
# Face detection
faces, is_null = extract_faces_mtcnn_new(ims, INPUT_SIZE)
is_null = np.zeros(ims.shape[0])
print(f"Detected Faces")
if TIMING_VERBOSE:
time3 = time.time()
print('Time: ', time3 - time2)
# Load the relevant network and get its predictions
model = get_emotion_predictor(MODEL_TYPE)
scores_real = hse_preds_new(faces, model, model_type=MODEL_TYPE)
scores_real[is_null == 1] = 0 # clear the predictions from frames w/o faces!
print("Got Network Predictions")
if TIMING_VERBOSE:
time4 = time.time()
print('Time: ', time4 - time3)
# Save outputs to a CSV
frames = np.arange(frame_now, frame_now + BATCH_NOW).reshape(BATCH_NOW, 1)
csv_save_HSE(labels=scores_real, is_null=is_null, frames=frames, save_path=save_path_now, fps=fps)
print(f"Saved CSV to {save_path_now}!")
frame_now = frame_now + BATCH_NOW
frame_printing = frame_printing + BATCH_SIZE
# Reset ims to save space
ims = []
# Reset timing
if TIMING_VERBOSE:
time1 = time.time()
frameNr = frameNr + 1
capture.release()
# Time estimation
elapsed_time = time.time() - start_time
iterations_left = num_vids - unprocessed_videos.index(i) - 1
time_per_iteration = elapsed_time / (unprocessed_videos.index(i) + 1)
time_left = time_per_iteration * iterations_left
time_left_formatted = str(datetime.timedelta(seconds=int(time_left)))
# print an update on the progress
print("Approximately ", time_left_formatted, " left to complete analyzing all videos")