-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_MMPose.py
200 lines (157 loc) · 11.2 KB
/
main_MMPose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import subprocess
import time
import datetime
from setup import download_file
import torch
import itertools
import json
from utilsMMPose import *
"""
Full Pipeline - MMPose
"""
# Set the parameters
VIDEO_DIRECTORY = os.path.abspath('MMPose_inputs/')
OUTPUT_DIRECTORY = os.path.abspath('outputs_MMPose/') # This is where json results go
OUTPUT_VIDEO_DIRECTORY = os.path.abspath('outputs_MMPose/') # This is where videos/images with overlay go
TOP_DOWN = True
CONFIGS_BASE = os.path.abspath('mmpose/configs/body_2d_keypoint')
WHOLEBODY_CONFIGS_BASE = os.path.abspath('mmpose/configs/wholebody_2d_keypoint')
MMPOSE_MODEL_BASE = os.path.abspath('MMPose_models/')
# Model setup list
# (config_file, model_download, model_path, detector_setting)
# # FOR TOP DOWN WHOLE BODY
# model_setup_list = [
# (f'{WHOLEBODY_CONFIGS_BASE}/rtmpose/coco-wholebody/rtmpose-l_8xb64-270e_coco-wholebody-256x192.py', 'https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-coco-wholebody_pt-aic-coco_270e-256x192-6f206314_20230124.pth', f'{MMPOSE_MODEL_BASE}/rtmpose-l_simcc-coco-wholebody_pt-aic-coco_270e-256x192-6f206314_20230124.pth', 'RTM'),
# (f'{WHOLEBODY_CONFIGS_BASE}/rtmpose/coco-wholebody/rtmpose-l_8xb32-270e_coco-wholebody-384x288.py', 'https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-coco-wholebody_pt-aic-coco_270e-384x288-eaeb96c8_20230125.pth', f'{MMPOSE_MODEL_BASE}/rtmpose-l_simcc-coco-wholebody_pt-aic-coco_270e-384x288-eaeb96c8_20230125.pth', 'RTM'),
# (f'{WHOLEBODY_CONFIGS_BASE}/rtmpose/coco-wholebody/rtmpose-m_8xb64-270e_coco-wholebody-256x192.py', 'https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-m_simcc-coco-wholebody_pt-aic-coco_270e-256x192-cd5e845c_20230123.pth', f'{MMPOSE_MODEL_BASE}/rtmpose-m_simcc-coco-wholebody_pt-aic-coco_270e-256x192-cd5e845c_20230123.pth', 'RTM')
# ]
# # FOR TOP DOWN BODY 2D
model_setup_list = [
(f'{CONFIGS_BASE}/topdown_heatmap/coco/td-hm_vitpose-huge_8xb64-210e_coco-256x192.py', 'https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/topdown_heatmap/coco/td-hm_ViTPose-huge_8xb64-210e_coco-256x192-e32adcd4_20230314.pth', f'{MMPOSE_MODEL_BASE}/td-hm_ViTPose-huge_8xb64-210e_coco-256x192-e32adcd4_20230314.pth', 'MM'),
(f'{CONFIGS_BASE}/topdown_heatmap/coco/td-hm_ViTPose-large_8xb64-210e_coco-256x192.py', 'https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/topdown_heatmap/coco/td-hm_ViTPose-large_8xb64-210e_coco-256x192-53609f55_20230314.pth', f'{MMPOSE_MODEL_BASE}/td-hm_ViTPose-large_8xb64-210e_coco-256x192-53609f55_20230314.pth', 'MM'),
(f'{CONFIGS_BASE}/topdown_heatmap/coco/td-hm_hrformer-base_8xb32-210e_coco-384x288.py', 'https://download.openmmlab.com/mmpose/top_down/hrformer/hrformer_base_coco_384x288-ecf0758d_20220316.pth', f'{MMPOSE_MODEL_BASE}/hrformer_base_coco_384x288-ecf0758d_20220316.pth', 'MM'),
(f'{CONFIGS_BASE}/topdown_heatmap/coco/td-hm_hrnet-w48_udp-8xb32-210e_coco-384x288.py', 'https://download.openmmlab.com/mmpose/v1/body_2d_keypoint/topdown_heatmap/coco/td-hm_hrnet-w48_udp-8xb32-210e_coco-384x288-70d7ab01_20220913.pth', f'{MMPOSE_MODEL_BASE}/td-hm_hrnet-w48_udp-8xb32-210e_coco-384x288-70d7ab01_20220913.pth', 'MM'),
(f'{CONFIGS_BASE}/rtmpose/coco/rtmpose-l_8xb256-420e_aic-coco-384x288.py', 'https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-aic-coco_pt-aic-coco_420e-384x288-97d6cb0f_20230228.pth', f'{MMPOSE_MODEL_BASE}/rtmpose-l_simcc-aic-coco_pt-aic-coco_420e-384x288-97d6cb0f_20230228.pth', 'RTM'),
(f'{CONFIGS_BASE}/rtmpose/coco/rtmpose-m_8xb256-420e_aic-coco-384x288.py', 'https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-m_simcc-aic-coco_pt-aic-coco_420e-384x288-a62a0b32_20230228.pth', f'{MMPOSE_MODEL_BASE}/rtmpose-m_simcc-aic-coco_pt-aic-coco_420e-384x288-a62a0b32_20230228.pth', 'RTM'),
(f'{CONFIGS_BASE}/rtmpose/coco/rtmpose-l_8xb256-420e_aic-coco-256x192.py', 'https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-aic-coco_pt-aic-coco_420e-256x192-f016ffe0_20230126.pth', f'{MMPOSE_MODEL_BASE}/rtmpose-l_simcc-aic-coco_pt-aic-coco_420e-256x192-f016ffe0_20230126.pth', 'RTM')
]
# # FOR BOTTOM UP BODY 2D
# model_setup_list = [
# (f'{CONFIGS_BASE}/rtmpose/coco/rtmpose-l_8xb256-420e_aic-coco-384x288.py', 'https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-aic-coco_pt-aic-coco_420e-384x288-97d6cb0f_20230228.pth', f'{MMPOSE_MODEL_BASE}/rtmpose-l_simcc-aic-coco_pt-aic-coco_420e-384x288-97d6cb0f_20230228.pth', 'RTM'),
# (f'{CONFIGS_BASE}/rtmpose/coco/rtmpose-m_8xb256-420e_aic-coco-384x288.py', 'https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-m_simcc-aic-coco_pt-aic-coco_420e-384x288-a62a0b32_20230228.pth', f'{MMPOSE_MODEL_BASE}/rtmpose-m_simcc-aic-coco_pt-aic-coco_420e-384x288-a62a0b32_20230228.pth', 'RTM'),
# (f'{CONFIGS_BASE}/rtmpose/coco/rtmpose-l_8xb256-420e_aic-coco-256x192.py', 'https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-aic-coco_pt-aic-coco_420e-256x192-f016ffe0_20230126.pth', f'{MMPOSE_MODEL_BASE}/rtmpose-l_simcc-aic-coco_pt-aic-coco_420e-256x192-f016ffe0_20230126.pth', 'RTM')
# ]
# Detector mapping
# {detector_setting: (det_config_file, det_model_download, det_model_path)}
detector_mapping = {
'RTM': ('mmpose/projects/rtmpose/rtmdet/person/rtmdet_m_640-8xb32_coco-person.py', 'https://download.openmmlab.com/mmpose/v1/projects/rtmpose/rtmdet_m_8xb32-100e_coco-obj365-person-235e8209.pth', f'{MMPOSE_MODEL_BASE}/rtmdet_m_8xb32-100e_coco-obj365-person-235e8209.pth'),
'RTMN': ('mmpose/projects/rtmpose/rtmdet/person/rtmdet_nano_320-8xb32_coco-person.py', 'https://download.openmmlab.com/mmpose/v1/projects/rtmpose/rtmdet_nano_8xb32-100e_coco-obj365-person-05d8511e.pth', f'{MMPOSE_MODEL_BASE}/rtmdet_nano_8xb32-100e_coco-obj365-person-05d8511e.pth'),
'MM': ('mmpose/demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py', 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth', f'{MMPOSE_MODEL_BASE}/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth')
}
# Parameter grid search
# {parameter flag}: list of values
parameter_search = {
'--nms-thr': [0.2],
'--bbox-thr': [0.3],
'--kpt-thr': [0.3]
}
# Get all combinations of parameters
parameter_combinations = list(itertools.product(*parameter_search.values()))
# Combine parameter_search and parameter_combinations into a new dictionary
combined_data = {
'parameter_search': parameter_search,
'parameter_combinations': parameter_combinations
}
# Save the combined data to a JSON file
with open(os.path.join(OUTPUT_DIRECTORY, 'parameter_combinations.json'), 'w') as file:
json.dump(combined_data, file)
with open(os.path.join(OUTPUT_VIDEO_DIRECTORY, 'parameter_combinations.json'), 'w') as file:
json.dump(combined_data, file)
# Get the list of all videos in the given directory
all_videos = [vid for vid in os.listdir(VIDEO_DIRECTORY) if vid[0:1] != '.']
# For timing estimation
valid_videos = [vid for vid in all_videos if os.path.isfile(os.path.join(VIDEO_DIRECTORY, vid))]
num_vids = len(valid_videos)
start_time = time.time()
# device
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
for param_enum, combination in enumerate(parameter_combinations):
# Create a dictionary with parameter names and values
parameters = dict(zip(parameter_search.keys(), combination))
parameter_string = ' '.join([f'{key} {value}' for key, value in parameters.items()])
# Loop through all model setups
for (config_file, model_download, model_path, det_setting) in model_setup_list:
# Download model if not already there
if not(os.path.exists(model_path)):
print(f'DOWNLOADING TO {model_path}')
download_file(model_download, model_path)
det_config_file, det_model_download, det_model_path = detector_mapping[det_setting]
# Download detector model if not already there
if not(os.path.exists(det_model_path)):
print(f'DOWNLOADING TO {det_model_path}')
download_file(det_model_download, det_model_path)
# combine parameter combination number with model name to get folder for saving!
model_base = f'{param_enum}_' + os.path.split(model_path)[-1]
os.makedirs(os.path.join(OUTPUT_DIRECTORY, model_base), exist_ok=True)
os.makedirs(os.path.join(OUTPUT_VIDEO_DIRECTORY, model_base), exist_ok=True)
# save parameters to a file
with open(os.path.join(OUTPUT_DIRECTORY, model_base, 'parameters.json'), 'w') as file:
json.dump(parameters, file)
with open(os.path.join(OUTPUT_VIDEO_DIRECTORY, model_base, 'parameters.json'), 'w') as file:
json.dump(parameters, file)
df_list = []
# Loop through all videos (or images)
for i in all_videos:
save_file = os.path.join(OUTPUT_DIRECTORY, f'{model_base}', 'results_' + i[:-4] + '.json')
video_path = os.path.join(VIDEO_DIRECTORY, i)
if os.path.exists(save_file):
print(f'Skipping Video/Image {i}: Output File Already Exists!')
elif os.path.isfile(video_path):
if TOP_DOWN:
cmd = f'python mmpose/JayGopal/run_topdown.py \
"{os.path.abspath(det_config_file)}" \
"{os.path.abspath(det_model_path)}" \
"{os.path.abspath(config_file)}" \
"{os.path.abspath(model_path)}" \
--input "{video_path}" \
--draw-heatmap \
--save-predictions \
--output-root "{os.path.abspath(f"{OUTPUT_DIRECTORY}/{model_base}/")}" \
--output-video "{os.path.abspath(f"{OUTPUT_VIDEO_DIRECTORY}/{model_base}/")}" \
--device {device} \
{parameter_string}'
else:
cmd = f'python mmpose/JayGopal/run_bottomup.py \
"{os.path.abspath(config_file)}" \
"{os.path.abspath(model_path)}" \
--input "{video_path}" \
--output-root "{os.path.abspath(f"{OUTPUT_DIRECTORY}/{model_base}/")}" \
--output-video "{os.path.abspath(f"{OUTPUT_VIDEO_DIRECTORY}/{model_base}/")}" \
--save-predictions --draw-heatmap \
--device {device}'
subprocess.run(cmd, shell=True)
if video_path[-4:] == '.mp4':
df_temp = convert_to_df_vid(save_file)
else:
df_temp = convert_to_df(save_file)
df_temp.insert(0, 'Filename', [i]*len(df_temp))
df_list.append(df_temp)
else:
print(f'WARNING: Got path {video_path}, which is not a valid video or image file!')
if len(df_list) > 0:
df_combined = pd.concat(df_list, ignore_index=True)
df_combined.to_csv(os.path.join(OUTPUT_DIRECTORY, f'{model_base}/combined.csv'), index=False)
# Time estimation
elapsed_time = time.time() - start_time
total_iterations = (len(model_setup_list)*len(parameter_combinations))
iterations_left = total_iterations - (len(model_setup_list)*param_enum) - model_setup_list.index( (config_file, model_download, model_path, det_setting) ) - 1
time_per_iteration = elapsed_time / (total_iterations - iterations_left)
time_left = time_per_iteration * iterations_left
time_left_formatted = str(datetime.timedelta(seconds=int(time_left)))
# print an update on the progress
print('-' * 20)
print('-' * 20)
print("Approximately", time_left_formatted, "left to complete the operation")
print('-' * 20)
print('-' * 20)