-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_PyFeat_Visualization.py
43 lines (34 loc) · 1.54 KB
/
main_PyFeat_Visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import os
import numpy as np
from feat.plotting import plot_face
import matplotlib.pyplot as plt
# Set the patient ID and results path
PAT_SHORT_NAME = "S_199" # Change this as needed
RESULTS_PATH_BASE = f"/home/jgopal/NAS/Analysis/AudioFacialEEG/Results/{PAT_SHORT_NAME}/OGAU_L_/"
METRIC_NOW = 'Mood'
# Ensure the results folder exists
os.makedirs(RESULTS_PATH_BASE, exist_ok=True)
# Define AU activations manually (e.g., 1 = activated, 0 = not activated, or intensities 0-3)
# Ordered AUs are: 1, 2, 4, 5, 6, 7, 9, 11, 12, 14, 15, 17, 20, 23, 24, 25, 26, 28, 43
au_order = [1, 2, 4, 5, 6, 7, 9, 11, 12, 14, 15, 17, 20, 23, 24, 25, 26, 28, 43]
au_activations = {
1: 3, # AU1 activated at intensity 3
2: 0, # AU2 not activated
12: 2, # AU12 activated at intensity 2 (e.g., smiling)
43: 1, # AU43 activated at intensity 1 (e.g., eyes closed)
}
# Convert dictionary to numpy array with 20 elements
au_vector = np.zeros(len(au_order))
for au, intensity in au_activations.items():
if au in au_order:
index = au_order.index(au)
au_vector[index] = intensity # Map AU to the correct index
# Create muscle heatmap settings
muscles = {'all': 'heatmap'}
# Plot the face with muscle heatmaps
ax = plot_face(au=au_vector, muscles=muscles, title=f"Patient {PAT_SHORT_NAME} - {METRIC_NOW} AU Activation")
# Save the plot to the results folder
output_path = os.path.join(RESULTS_PATH_BASE, f"{METRIC_NOW}_face_heatmap.png")
plt.savefig(output_path, dpi=300, bbox_inches='tight')
plt.close()
print(f"[LOG] Face heatmap saved to {output_path}")