-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilsVerify.py
389 lines (308 loc) · 14 KB
/
utilsVerify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
"""
DEEPFACE
"""
import os
import pandas as pd
from deepface import DeepFace
import cv2
import shutil
import sys
import numpy as np
import glob
import math
import torch
import gc
import tensorflow as tf
def verify_partial_faces_np_data(target_img_folder, np_data, bboxes, distance_max=30, verify_threshold=0.32):
# Goal: determine which images have any one of the target faces, and get the bboxes of the target face in those images.
# Returns a pandas df that has an 'index' column indicating index in np_data, and the bbox coordinates for each index
# Note that our final pandas df won't have all indices in np_data since some frames won't have successful verification of our target face!
# PARTIAL verify. Verify one face, then use the "nearest" face within a threshold for subsequent frames.
# If no face is within threshold, verify next face and continue.
# This speeds up the pipeline significantly.
# All target images
allowed_endings = ['jpg', 'jpeg', 'JPG', 'JPEG']
target_jpg_file_list = []
for ending_now in allowed_endings:
target_jpg_file_list = target_jpg_file_list + glob.glob(target_img_folder + f'/*.{ending_now}')
target_jpg_file_list = sorted(target_jpg_file_list)
# Partial verification
results = []
last_frame_was_verified = False
last_x_center = 0
last_y_center = 0
for i in range(np_data.shape[0]):
if i % 50 == 0:
print(f'Starting verification {i}/{np_data.shape[0]}')
data_now = np_data[i]
verifyThisFrame = True # By default, we will verify this frame
if last_frame_was_verified:
verifyThisFrame = False # If last frame was verified, partial verify doesn't verify this frame
bounding_boxes_one_frame = bboxes[i]
bbox_x_centers = [(box_now[0] + box_now[2])/2 for box_now in bounding_boxes_one_frame]
bbox_y_centers = [(box_now[1] + box_now[3])/2 for box_now in bounding_boxes_one_frame]
face_distances = [math.sqrt((x - last_x_center)**2 + (y - last_y_center)**2) for x, y in zip(bbox_x_centers, bbox_y_centers)]
min_distance_index = np.argmin(face_distances)
min_distance = face_distances[min_distance_index]
if min_distance < distance_max:
face_x, face_y, face_x2, face_y2 = bounding_boxes_one_frame[min_distance_index]
face_w = face_x2 - face_x
face_h = face_y2 - face_y
# DEBUG ONLY
#print(f'Successful partial verify')
image_data = {
'Index': int(i),
'Partial Verify': True,
'Distance': min_distance,
'Facial Box X': int(face_x),
'Facial Box Y': int(face_y),
'Facial Box W': int(face_w),
'Facial Box H': int(face_h)
}
results.append(image_data)
last_frame_was_verified = True
last_x_center = bbox_x_centers[min_distance_index]
last_y_center = bbox_y_centers[min_distance_index]
else:
# DEBUG ONLY
#print(f'Failed partial verify. Min distance was {min_distance}')
last_frame_was_verified = False
verifyThisFrame = True # Partial verify calls on full verify if no face is within distance_max
if verifyThisFrame:
# Undo preprocessing
data_now = cv2.cvtColor(data_now, cv2.COLOR_RGB2BGR)
for enum_target, target_img_path in enumerate(target_jpg_file_list):
# SILENT RUN
original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
result = DeepFace.verify(img1_path=target_img_path, img2_path=data_now, enforce_detection=False, model_name='VGG-Face', detector_backend='mtcnn')
sys.stdout.close()
sys.stdout = original_stdout
if result['verified'] and result['distance'] < verify_threshold:
# DEBUG ONLY
# print(f'verified one face! {i}')
face_x = result['facial_areas']['img2']['x']
face_y = result['facial_areas']['img2']['y']
face_w = result['facial_areas']['img2']['w']
face_h = result['facial_areas']['img2']['h']
image_data = {
'Index': int(i),
'Partial Verify': False,
'Distance': result['distance'],
'Facial Box X': int(face_x),
'Facial Box Y': int(face_y),
'Facial Box W': int(face_w),
'Facial Box H': int(face_h)
}
results.append(image_data)
last_frame_was_verified = True
last_x_center = face_x + face_w/2
last_y_center = face_y + face_h/2
break # break the inner for loop here!
if enum_target == (len(target_jpg_file_list) - 1):
# Failed verification across all jpgs. We need to reset last frame
last_frame_was_verified = False
# Getting a pandas df
df = pd.DataFrame(results)
del results
if df.shape and df.shape[0] > 0:
df.columns = ['Index', 'Partial Verify', 'Distance', 'Facial Box X', 'Facial Box Y', 'Facial Box W', 'Facial Box H']
# Cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
tf.keras.backend.clear_session()
return df
def verify_faces_np_data(target_img_folder, np_data, verify_threshold=0.32):
# Goal: determine which images have any one of the target faces, and get the bboxes of the target face in those images.
# Returns a pandas df that has an 'index' column indicating index in np_data, and the bbox coordinates for each index
# Note that our final pandas df won't have all indices in np_data since some frames won't have successful verification of our target face!
# All target images
allowed_endings = ['jpg', 'jpeg', 'JPG', 'JPEG']
target_jpg_file_list = []
for ending_now in allowed_endings:
target_jpg_file_list = target_jpg_file_list + glob.glob(target_img_folder + f'/*.{ending_now}')
target_jpg_file_list = sorted(target_jpg_file_list)
# Verifying each image
results = []
for i in range(np_data.shape[0]):
if i % 50 == 0:
print(f'Starting verification {i}/{np_data.shape[0]}')
data_now = np_data[i]
# Undo preprocessing
data_now = cv2.cvtColor(data_now, cv2.COLOR_RGB2BGR)
for target_img_path in target_jpg_file_list:
# SILENT RUN
original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
result = DeepFace.verify(img1_path=target_img_path, img2_path=data_now, enforce_detection=False, model_name='VGG-Face', detector_backend='mtcnn')
sys.stdout.close()
sys.stdout = original_stdout
if result['verified'] and result['distance'] < verify_threshold:
# DEBUG ONLY
# print(f'verified one face! {i}')
face_x = result['facial_areas']['img2']['x']
face_y = result['facial_areas']['img2']['y']
face_w = result['facial_areas']['img2']['w']
face_h = result['facial_areas']['img2']['h']
image_data = {
'Index': int(i),
'Partial Verify': False,
'Distance': result['distance'],
'Facial Box X': int(face_x),
'Facial Box Y': int(face_y),
'Facial Box W': int(face_w),
'Facial Box H': int(face_h)
}
results.append(image_data)
break # break the inner for loop here!
# Getting a pandas df
df = pd.DataFrame(results)
del results
if df.shape and df.shape[0] > 0:
df.columns = ['Index', 'Partial Verify', 'Distance', 'Facial Box X', 'Facial Box Y', 'Facial Box W', 'Facial Box H']
# Cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
tf.keras.backend.clear_session()
return df
def verify_one_face_folder_np_data(target_img_folder, np_data):
# Goal: determine if one image has the target face, and get the bboxes of the target face in that image.
# Returns either a 4-membered tuple (x, y, w, h) or None depending on whether face was verified
# All target images
allowed_endings = ['jpg', 'jpeg', 'JPG', 'JPEG']
target_jpg_file_list = []
for ending_now in allowed_endings:
target_jpg_file_list = target_jpg_file_list + glob.glob(target_img_folder + f'/*.{ending_now}')
target_jpg_file_list = sorted(target_jpg_file_list)
# Verifying each image
data_now = np_data
# Undo preprocessing
data_now = cv2.cvtColor(data_now, cv2.COLOR_RGB2BGR)
for target_img_path in target_jpg_file_list:
# SILENT RUN
original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
result = DeepFace.verify(img1_path=target_img_path, img2_path=data_now, enforce_detection=False, model_name='VGG-Face', detector_backend='mtcnn')
sys.stdout.close()
sys.stdout = original_stdout
if result['verified']:
# DEBUG ONLY
# print(f'verified one face! {i}')
face_x = result['facial_areas']['img2']['x']
face_y = result['facial_areas']['img2']['y']
face_w = result['facial_areas']['img2']['w']
face_h = result['facial_areas']['img2']['h']
return_tuple = (face_x, face_y, face_w, face_h)
return return_tuple
return None
def verify_one_face_np_data(target_img_path, np_data):
# Goal: determine if one image has the target face, and get the bboxes of the target face in that image.
# Returns either a 4-membered tuple (x, y, w, h) or None depending on whether face was verified
# Verifying each image
data_now = np_data
# Undo preprocessing
data_now = cv2.cvtColor(data_now, cv2.COLOR_RGB2BGR)
# SILENT RUN
original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
result = DeepFace.verify(img1_path=target_img_path, img2_path=data_now, enforce_detection=False, model_name='VGG-Face', detector_backend='mtcnn')
sys.stdout.close()
sys.stdout = original_stdout
if result['verified']:
face_x = result['facial_areas']['img2']['x']
face_y = result['facial_areas']['img2']['y']
face_w = result['facial_areas']['img2']['w']
face_h = result['facial_areas']['img2']['h']
return_tuple = (face_x, face_y, face_w, face_h)
return return_tuple
else:
return None
def has_jpg_or_jpeg_files(folder_path):
# List all files in the folder
files = os.listdir(folder_path)
# Check if there are any .jpg or .jpeg files
for file in files:
if file.lower().endswith((".jpg", ".jpeg")):
return True # Found at least one jpg or jpeg file
return False # No jpg or jpeg files found
"""
MMPose
"""
def avg_face_conf_body_2d(pose_results):
# Given a list of MMPose poseResult objects
# Returns a (num_faces,) array with average face confidence for each face
# Assumes there is at least 1 face detected (len(pose_results) >= 1)
# NOTE: Assumes body 2d keypoints, which has a specific number of facial landmarks!
if len(pose_results) < 1:
raise ValueError("Pose Results must have at least 1 face detected!")
confidences = []
for i in pose_results:
preds = i.get('pred_instances')
kp_scores = preds['keypoint_scores']
face_confidences = kp_scores[0][0:3] # nose and two eyes
avg_conf = np.mean(face_confidences)
confidences.append(avg_conf)
confidences = np.array(confidences)
return confidences
def get_nose_coords_body_2d(pose_results):
# Given a list of MMPose poseResult objects
# Returns a (num_faces,2) array with nose x, nose y for each face
# Assumes there is at least 1 face detected (len(pose_results) >= 1)
# NOTE: Assumes body 2d keypoints, which has a specific number of facial landmarks!
if len(pose_results) < 1:
raise ValueError("Pose Results must have at least 1 face detected!")
nose_coords_all = []
for i in pose_results:
preds = i.get('pred_instances')
kp_coords = preds['keypoints']
nose_coords = kp_coords[0][0]
nose_coords_all.append(nose_coords)
nose_coords_all = np.array(nose_coords_all)
return nose_coords_all
def closest_person_index(correct_x, correct_y, nose_coordinates, threshold=25, printMins=True):
# Compute the Euclidean distances from (correct_x, correct_y) to all points in nose_coordinates
distances = np.sqrt((nose_coordinates[:, 0] - correct_x)**2 + (nose_coordinates[:, 1] - correct_y)**2)
# Get the index of the closest person
min_index = np.argmin(distances)
# Printing
if printMins:
print('MINIMUM DISTANCE FOR ONE FRAME:', distances[min_index])
# Check if the closest distance is greater than the threshold
if distances[min_index] > threshold:
return -1
else:
return min_index
"""
FACETORCH (Not using)
"""
from facetorch import FaceAnalyzer
from omegaconf import OmegaConf
from torch.nn.functional import cosine_similarity
def load_config(path_to_config="./facetorch/facetorch_config_verifyOnly.yml"):
return OmegaConf.load(path_to_config)
def init_analyzer(cfg, path_image='./facetorch/demo.jpg'):
# initialize
analyzer = FaceAnalyzer(cfg.analyzer)
# warmup
response = analyzer.run(
path_image=path_image,
batch_size=cfg.batch_size,
fix_img_size=cfg.fix_img_size,
return_img_data=False,
include_tensors=True,
path_output='./facetorch/im_out.jpg')
return analyzer
def get_verify_vectors_one_face(analyzer, cfg, face_data, tmp_save='./facetorch/tmp_save.jpg'):
# Save Image to file
cv2.imwrite(os.path.join(tmp_save, f'frame_0.jpg'), face_data)
# Get Facetorch output
response = analyzer.run(
path_image=tmp_save,
batch_size=cfg.batch_size,
fix_img_size=cfg.fix_img_size,
return_img_data=cfg.return_img_data,
include_tensors=cfg.include_tensors,
path_output='./facetorch/im_out.jpg')
return response