Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

请教复现问题 #99

Open
18140663659 opened this issue Mar 14, 2022 · 8 comments
Open

请教复现问题 #99

18140663659 opened this issue Mar 14, 2022 · 8 comments

Comments

@18140663659
Copy link

18140663659 commented Mar 14, 2022

刚开始使用,下面的代码模型训练好像有问题

import m3tl
from m3tl.preproc_decorator import preprocessing_fn
from m3tl.params import Params
from m3tl.special_tokens import TRAIN
from m3tl.predefined_problems.ner_data import get_weibo_ner_fn

params = m3tl.params.Params()
for problem_type in params.list_available_problem_types():
print('{problem_type}: {desc}'.format(
desc=params.problem_type_desc[problem_type], problem_type=problem_type))

problem_type_dict = {'weibo_ner':'seq_tag'}

processing_fn_dict = {'weibo_ner':get_weibo_ner_fn("data/ner/weiboNER*")}

from m3tl.run_bert_multitask import train_bert_multitask, eval_bert_multitask, predict_bert_multitask
problem = 'weibo_ner'

model = train_bert_multitask(
params=params,
problem=problem,
num_epochs=20,
problem_type_dict=problem_type_dict,
processing_fn_dict=processing_fn_dict,
continue_training=False
)

具体结果如下:
/0: 2.7941
Epoch 3/20
1/11 [=>............................] - ETA: 0s - mean_acc: 1.3923 - weibo_ner_acc: 0.0737 - 2/11 [====>.........................] - ETA: 20s - mean_acc: 1.3904 - weibo_ner_acc: 0.0748 3/11 [=======>......................] - ETA: 18s - mean_acc: 1.4114 - weibo_ner_acc: 0.0706 4/11 [=========>....................] - ETA: 19s - mean_acc: 1.4114 - weibo_ner_acc: 0.0694 5/11 [============>.................] - ETA: 16s - mean_acc: 1.4064 - weibo_ner_acc: 0.0679 6/11 [===============>..............] - ETA: 16s - mean_acc: 1.4166 - weibo_ner_acc: 0.0696 7/11 [==================>...........] - ETA: 16s - mean_acc: 1.4105 - weibo_ner_acc: 0.0715 - BertMultiTaskTop/weibo_ner/losses/0: 8/11 [====================>.........] - ETA: 11s - mean_acc: 1.4148 - weibo_ner_acc: 0.0707 - BertMultiTaskTop/weibo_ner/losses/0: 9/11 [=======================>......] - ETA: 7s - mean_acc: 1.4135 - weibo_ner_acc: 0.0700 - BertMultiTaskTop/weibo_ner/losses/0: 10/11 [==========================>...] - ETA: 3s - mean_acc: 1.4174 - weibo_ner_acc: 0.0703 - BertMultiTaskTop/weibo_ner/losses/0: 11/11 [==============================] - ETA: 0s - mean_acc: 1.4229 - weibo_ner_acc: 0.0699 - BertMultiTaskTop/weibo_ner/losses/0: 11/11 [==============================] - 41s 4s/step - mean_acc: 1.4229 - weibo_ner_acc: 0.0699 - BertMultiTaskTop/weibo_ner/losses/0: 2.7844
Epoch 4/20
1/11 [=>............................] - ETA: 0s - mean_acc: 1.4003 - weibo_ner_acc: 0.0613 - BertMultiTaskTop/weibo_ner/losses/0: 2/11 [====>.........................] - ETA: 16s - mean_acc: 1.4068 - weibo_ner_acc: 0.0607 - BertMultiTaskTop/weibo_ner/losses/0: 3/11 [=======>......................] - ETA: 33s - mean_acc: 1.3949 - weibo_ner_acc: 0.0686 - BertMultiTaskTop/weibo_ner/losses/0: 4/11 [=========>....................] - ETA: 25s - mean_acc: 1.3999 - weibo_ner_acc: 0.0677 - BertMultiTaskTop/weibo_ner/losses/0: 5/11 [============>.................] - ETA: 23s - mean_acc: 1.4015 - weibo_ner_acc: 0.0669 - BertMultiTaskTop/weibo_ner/losses/0: 6/11 [===============>..............] - ETA: 20s - mean_acc: 1.4122 - weibo_ner_acc: 0.0679 - BertMultiTaskTop/weibo_ner/losses/0: 7/11 [==================>...........] - ETA: 19s - mean_acc: 1.4101 - weibo_ner_acc: 0.0682 - BertMultiTaskTop/weibo_ner/losses/0: 8/11 [====================>.........] - ETA: 13s - mean_acc: 1.4176 - weibo_ner_acc: 0.0668 - BertMultiTaskTop/weibo_ner/losses/0: 9/11 [=======================>......] - ETA: 8s - mean_acc: 1.4131 - weibo_ner_acc: 0.0674 - BertMultiTaskTop/weibo_ner/losses/0: 10/11 [==========================>...] - ETA: 4s - mean_acc: 1.4180 - weibo_ner_acc: 0.0673 - BertMultiTaskTop/weibo_ner/losses/0: 11/11 [==============================] - ETA: 0s - mean_acc: 1.4211 - weibo_ner_acc: 0.0680 - BertMultiTaskTop/weibo_ner/losses/0: 11/11 [==============================] - 45s 4s/step - mean_acc: 1.4211 - weibo_ner_acc: 0.0680 - BertMultiTaskTop/weibo_ner/losses/0: 2.7807
Epoch 5/20
1/11 [=>............................] - ETA: 0s - mean_acc: 1.3925 - weibo_ner_acc: 0.0683 - BertMultiTaskTop/weibo_ner/losses/0: 2/11 [====>.........................] - ETA: 9s - mean_acc: 1.4057 - weibo_ner_acc: 0.0677 - BertMultiTaskTop/weibo_ner/losses/0: 3/11 [=======>......................] - ETA: 19s - mean_acc: 1.4285 - weibo_ner_acc: 0.0730 - BertMultiTaskTop/weibo_ner/losses/0: 4/11 [=========>....................] - ETA: 31s - mean_acc: 1.4171 - weibo_ner_acc: 0.0692 - BertMultiTaskTop/weibo_ner/losses/0: 5/11 [============>.................] - ETA: 24s - mean_acc: 1.4222 - weibo_ner_acc: 0.0670 - BertMultiTaskTop/weibo_ner/losses/0: 6/11 [===============>..............] - ETA: 20s - mean_acc: 1.4147 - weibo_ner_acc: 0.0685 - BertMultiTaskTop/weibo_ner/losses/0: 7/11 [==================>...........] - ETA: 18s - mean_acc: 1.4084 - weibo_ner_acc: 0.0697 - BertMultiTaskTop/weibo_ner/losses/0: 8/11 [====================>.........] - ETA: 12s - mean_acc: 1.4074 - weibo_ner_acc: 0.0690 - BertMultiTaskTop/weibo_ner/losses/0: 9/11 [=======================>......] - ETA: 8s - mean_acc: 1.4085 - weibo_ner_acc: 0.0690 - BertMultiTaskTop/weibo_ner/losses/0: 10/11 [==========================>...] - ETA: 3s - mean_acc: 1.4148 - weibo_ner_acc: 0.0690 - BertMultiTaskTop/weibo_ner/losses/0: 11/11 [==============================] - ETA: 0s - mean_acc: 1.4175 - weibo_ner_acc: 0.0700 - BertMultiTaskTop/weibo_ner/losses/0: 11/11 [==============================] - 45s 4s/step - mean_acc: 1.4175 - weibo_ner_acc: 0.0700 - BertMultiTaskTop/weibo_ner/losses/0: 2.7702
Epoch 6/20

@JayYip
Copy link
Owner

JayYip commented Mar 16, 2022

没看出来什么问题, 是否没有贴全

@18140663659
Copy link
Author

没看出来什么问题, 是否没有贴全

训练得acc 一直很低

@JayYip
Copy link
Owner

JayYip commented Mar 29, 2022

明白, 我有空看看

@hoangthangta
Copy link

hoangthangta commented May 10, 2022

I have the same with a low accuracy. It seems using "|" for the problems will have better results than "&".

problem = 'c2_cls|c3_cls|c4_cls|c5_cls|c6_cls'

@JayYip
Copy link
Owner

JayYip commented May 12, 2022

I have the same with a low accuracy. It seems using "|" for the problems will have better results than "&".

problem = 'c2_cls|c3_cls|c4_cls|c5_cls|c6_cls'

Thanks for the info. Will take a look tomorrow. BTW, are the results significantly better(meaning it can reach expected accuracy) when chaining with "|" or just slightly better?

@hoangthangta
Copy link

hoangthangta commented May 12, 2022

It is slightly better only. Btw, thank for your hard works but it seems there is a problem with the accuracy. When using your code for my case (offensive language detection), the accuracy gets stuck about 63% while I can obtain 83% with mt-dnn.

@JayYip
Copy link
Owner

JayYip commented May 12, 2022

In that case, I think there's a bug. Will further investigate.

@JayYip
Copy link
Owner

JayYip commented Jun 6, 2022

没看出来什么问题, 是否没有贴全

训练得acc 一直很低

好像无法复现. 我在我自己这边跑是正常的, mean_acc计算有点问题, 但是不影响效果.

Epoch 2/20
48/48 [==============================] - 5s 95ms/step - mean_acc: 0.5634 - weibo_ner_acc: 0.9591 - BertMultiTaskTop/weibo_ner/losses/0: 0.1731
Epoch 3/20
48/48 [==============================] - 4s 74ms/step - mean_acc: 0.5293 - weibo_ner_acc: 0.9703 - BertMultiTaskTop/weibo_ner/losses/0: 0.0904
Epoch 4/20
48/48 [==============================] - 4s 74ms/step - mean_acc: 0.5181 - weibo_ner_acc: 0.9772 - BertMultiTaskTop/weibo_ner/losses/0: 0.0574
Epoch 5/20
48/48 [==============================] - 4s 74ms/step - mean_acc: 0.5119 - weibo_ner_acc: 0.9814 - BertMultiTaskTop/weibo_ner/losses/0: 0.0445
Epoch 6/20
48/48 [==============================] - 4s 73ms/step - mean_acc: 0.5135 - weibo_ner_acc: 0.9845 - BertMultiTaskTop/weibo_ner/losses/0: 0.0412
Epoch 7/20
48/48 [==============================] - 5s 95ms/step - mean_acc: 0.5121 - weibo_ner_acc: 0.9863 - BertMultiTaskTop/weibo_ner/losses/0: 0.0391

不知道是否tf和transformers版本导致.

我测试的版本:

tf.__version__: 2.6.2
transformers.__version__: 4.19.2

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants