-
Notifications
You must be signed in to change notification settings - Fork 125
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
请教复现问题 #99
Comments
没看出来什么问题, 是否没有贴全 |
训练得acc 一直很低 |
明白, 我有空看看 |
I have the same with a low accuracy. It seems using "|" for the problems will have better results than "&".
|
Thanks for the info. Will take a look tomorrow. BTW, are the results significantly better(meaning it can reach expected accuracy) when chaining with "|" or just slightly better? |
It is slightly better only. Btw, thank for your hard works but it seems there is a problem with the accuracy. When using your code for my case (offensive language detection), the accuracy gets stuck about 63% while I can obtain 83% with mt-dnn. |
In that case, I think there's a bug. Will further investigate. |
好像无法复现. 我在我自己这边跑是正常的,
不知道是否tf和transformers版本导致. 我测试的版本:
|
刚开始使用,下面的代码模型训练好像有问题
import m3tl
from m3tl.preproc_decorator import preprocessing_fn
from m3tl.params import Params
from m3tl.special_tokens import TRAIN
from m3tl.predefined_problems.ner_data import get_weibo_ner_fn
params = m3tl.params.Params()
for problem_type in params.list_available_problem_types():
print('
{problem_type}
: {desc}'.format(desc=params.problem_type_desc[problem_type], problem_type=problem_type))
problem_type_dict = {'weibo_ner':'seq_tag'}
processing_fn_dict = {'weibo_ner':get_weibo_ner_fn("data/ner/weiboNER*")}
from m3tl.run_bert_multitask import train_bert_multitask, eval_bert_multitask, predict_bert_multitask
problem = 'weibo_ner'
model = train_bert_multitask(
params=params,
problem=problem,
num_epochs=20,
problem_type_dict=problem_type_dict,
processing_fn_dict=processing_fn_dict,
continue_training=False
)
具体结果如下:
/0: 2.7941
Epoch 3/20
1/11 [=>............................] - ETA: 0s - mean_acc: 1.3923 - weibo_ner_acc: 0.0737 - 2/11 [====>.........................] - ETA: 20s - mean_acc: 1.3904 - weibo_ner_acc: 0.0748 3/11 [=======>......................] - ETA: 18s - mean_acc: 1.4114 - weibo_ner_acc: 0.0706 4/11 [=========>....................] - ETA: 19s - mean_acc: 1.4114 - weibo_ner_acc: 0.0694 5/11 [============>.................] - ETA: 16s - mean_acc: 1.4064 - weibo_ner_acc: 0.0679 6/11 [===============>..............] - ETA: 16s - mean_acc: 1.4166 - weibo_ner_acc: 0.0696 7/11 [==================>...........] - ETA: 16s - mean_acc: 1.4105 - weibo_ner_acc: 0.0715 - BertMultiTaskTop/weibo_ner/losses/0: 8/11 [====================>.........] - ETA: 11s - mean_acc: 1.4148 - weibo_ner_acc: 0.0707 - BertMultiTaskTop/weibo_ner/losses/0: 9/11 [=======================>......] - ETA: 7s - mean_acc: 1.4135 - weibo_ner_acc: 0.0700 - BertMultiTaskTop/weibo_ner/losses/0: 10/11 [==========================>...] - ETA: 3s - mean_acc: 1.4174 - weibo_ner_acc: 0.0703 - BertMultiTaskTop/weibo_ner/losses/0: 11/11 [==============================] - ETA: 0s - mean_acc: 1.4229 - weibo_ner_acc: 0.0699 - BertMultiTaskTop/weibo_ner/losses/0: 11/11 [==============================] - 41s 4s/step - mean_acc: 1.4229 - weibo_ner_acc: 0.0699 - BertMultiTaskTop/weibo_ner/losses/0: 2.7844
Epoch 4/20
1/11 [=>............................] - ETA: 0s - mean_acc: 1.4003 - weibo_ner_acc: 0.0613 - BertMultiTaskTop/weibo_ner/losses/0: 2/11 [====>.........................] - ETA: 16s - mean_acc: 1.4068 - weibo_ner_acc: 0.0607 - BertMultiTaskTop/weibo_ner/losses/0: 3/11 [=======>......................] - ETA: 33s - mean_acc: 1.3949 - weibo_ner_acc: 0.0686 - BertMultiTaskTop/weibo_ner/losses/0: 4/11 [=========>....................] - ETA: 25s - mean_acc: 1.3999 - weibo_ner_acc: 0.0677 - BertMultiTaskTop/weibo_ner/losses/0: 5/11 [============>.................] - ETA: 23s - mean_acc: 1.4015 - weibo_ner_acc: 0.0669 - BertMultiTaskTop/weibo_ner/losses/0: 6/11 [===============>..............] - ETA: 20s - mean_acc: 1.4122 - weibo_ner_acc: 0.0679 - BertMultiTaskTop/weibo_ner/losses/0: 7/11 [==================>...........] - ETA: 19s - mean_acc: 1.4101 - weibo_ner_acc: 0.0682 - BertMultiTaskTop/weibo_ner/losses/0: 8/11 [====================>.........] - ETA: 13s - mean_acc: 1.4176 - weibo_ner_acc: 0.0668 - BertMultiTaskTop/weibo_ner/losses/0: 9/11 [=======================>......] - ETA: 8s - mean_acc: 1.4131 - weibo_ner_acc: 0.0674 - BertMultiTaskTop/weibo_ner/losses/0: 10/11 [==========================>...] - ETA: 4s - mean_acc: 1.4180 - weibo_ner_acc: 0.0673 - BertMultiTaskTop/weibo_ner/losses/0: 11/11 [==============================] - ETA: 0s - mean_acc: 1.4211 - weibo_ner_acc: 0.0680 - BertMultiTaskTop/weibo_ner/losses/0: 11/11 [==============================] - 45s 4s/step - mean_acc: 1.4211 - weibo_ner_acc: 0.0680 - BertMultiTaskTop/weibo_ner/losses/0: 2.7807
Epoch 5/20
1/11 [=>............................] - ETA: 0s - mean_acc: 1.3925 - weibo_ner_acc: 0.0683 - BertMultiTaskTop/weibo_ner/losses/0: 2/11 [====>.........................] - ETA: 9s - mean_acc: 1.4057 - weibo_ner_acc: 0.0677 - BertMultiTaskTop/weibo_ner/losses/0: 3/11 [=======>......................] - ETA: 19s - mean_acc: 1.4285 - weibo_ner_acc: 0.0730 - BertMultiTaskTop/weibo_ner/losses/0: 4/11 [=========>....................] - ETA: 31s - mean_acc: 1.4171 - weibo_ner_acc: 0.0692 - BertMultiTaskTop/weibo_ner/losses/0: 5/11 [============>.................] - ETA: 24s - mean_acc: 1.4222 - weibo_ner_acc: 0.0670 - BertMultiTaskTop/weibo_ner/losses/0: 6/11 [===============>..............] - ETA: 20s - mean_acc: 1.4147 - weibo_ner_acc: 0.0685 - BertMultiTaskTop/weibo_ner/losses/0: 7/11 [==================>...........] - ETA: 18s - mean_acc: 1.4084 - weibo_ner_acc: 0.0697 - BertMultiTaskTop/weibo_ner/losses/0: 8/11 [====================>.........] - ETA: 12s - mean_acc: 1.4074 - weibo_ner_acc: 0.0690 - BertMultiTaskTop/weibo_ner/losses/0: 9/11 [=======================>......] - ETA: 8s - mean_acc: 1.4085 - weibo_ner_acc: 0.0690 - BertMultiTaskTop/weibo_ner/losses/0: 10/11 [==========================>...] - ETA: 3s - mean_acc: 1.4148 - weibo_ner_acc: 0.0690 - BertMultiTaskTop/weibo_ner/losses/0: 11/11 [==============================] - ETA: 0s - mean_acc: 1.4175 - weibo_ner_acc: 0.0700 - BertMultiTaskTop/weibo_ner/losses/0: 11/11 [==============================] - 45s 4s/step - mean_acc: 1.4175 - weibo_ner_acc: 0.0700 - BertMultiTaskTop/weibo_ner/losses/0: 2.7702
Epoch 6/20
The text was updated successfully, but these errors were encountered: