-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathopt.py
71 lines (61 loc) · 3.68 KB
/
opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# -*- coding: utf-8 -*-
from collections import OrderedDict
def default_options():
options = OrderedDict()
### DATA ###
options['dataset'] = 'charades' # dataset name: 'tacos', 'charades', 'activitynet_captions'
options['feature_name'] = 'c3d_fc6_features' # feature name
options['feature_to_second'] = 1 # how many seconds correspond to one feature
options['init_from'] = '' # initialized weights
options['init_module'] = ['sentence_encoding', 'interactor'] # initialized modules
### MODEL CONFIG ###
options['video_feat_dim'] = 4096 # dim of video snippet feature
options['word_embed_size'] = 300 # use Glove pretrained word embedding
options['attention_hidden_size'] = 512 # neuron size for attention hidden layer
options['filter_number'] = 512 # filter number for the first cnn layer
options['rnn_size'] = 512 # number of rnn hidden neurons
options['max_sentence_len'] = 10 # maximum length of the sentences
options['adaptive_sent_states'] = False # sequence length input for dynamic_rnn
options['sample_len'] = 50 # sampling video length, measured in seconds
options['predict_boundary'] = False # whether add a branch to predict boundary
options['selfatt_restricted'] = False # restricted self attention
options['restricted_neighbors'] = 50 # restricted self attention
options['num_anchors'] = 20 # number of anchors
options['anchor_mask'] = False # use anchor mask
options['bidirectional_lstm_sentence'] = False # bidirectional lstm for sentence modeling
### OPTIMIZATION ###
# gpus
options['gpu_id'] = 0 # gpu id
options['train_id'] = 1 # train id
options['weight_boundary'] = 8. # weighting for boundary prediction branch
options['dropout'] = 0.5 # dropout
options['solver'] = 'adam' # 'sgd', momentum', 'adam', 'rmsprop', 'sgd_nestreov_momentum'
options['momentum'] = 0.9 # only valid when solver is set to momentum optimizer
options['batch_size'] = 64 # batch size
options['eval_batch_size'] = 3720 # batch size for evaluation
options['eval_batch_num'] = 10000 # eval batch number for each evaluation (to speed up the evaluation process)
options['learning_rate'] = 1e-3 # learning rate
options['lr_decay_factor'] = 0.1 # learning rate decay
options['n_epoch_to_decay'] = list(range(1, 100, 1))[::-1]
options['auto_lr_decay'] = True # automatically decay learning rate
options['observe_patience'] = 5 # observation patience for decaying learning rate
options['min_lr'] = 1e-5 # minimum learning rate
options['reg'] = 1e-5 # regularization
options['max_epochs'] = 100 # max number of epochs
options['init_epoch'] = 0 # initial epoch
options['n_eval_per_epoch'] = 0.2 # number of evaluations per epoch
options['eval_init'] = False # evaluate the initialized model
options['clip_gradient_norm'] = 100.0 # gradient clipping
options['log_input_min'] = 1e-20 # minimum input to the log() function
options['proposal_tiou_threshold'] = 0.85 # tiou threshold to positive samples
options['negative_tiou_threshold'] = 0.15 # tiou threshold to negative samples
options['nms_threshold'] = 0.55 # threshold for non-maximum suppression
### INFERENCE ###
options['max_proposal_num'] = 5 # number of proposals for evaluation
options['tiou_measure'] = 0.7 # evaluate recall@k based on a given tIoU threshold
# logging
options['n_iters_display'] = 1 # display frequency
# debug
options['print_debug'] = True
options['test_tensors'] = ['video_feat', 'proposal', 'proposal_weight']
return options