-
Notifications
You must be signed in to change notification settings - Fork 9
/
test.py
83 lines (64 loc) · 2.41 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# -*- coding: utf-8 -*-
import os
import json
import time
import numpy as np
from opt import default_options
from data_provider import DataProvision
from model import CBP
from util import evaluation_metric_util, mkdirs
import argparse
import tensorflow as tf
import sys
# set default encoding
#reload(sys)
#sys.setdefaultencoding('utf-8')
#np.set_printoptions(threshold='nan')
def test(options):
sess_config = tf.ConfigProto()
sess_config.gpu_options.allow_growth = True
os.environ['CUDA_VISIBLE_DEVICES'] = str(options['gpu_id'])
sess = tf.InteractiveSession(config=sess_config)
# build model
print('Building model ...')
model = CBP(options)
inputs, outputs = model.build_inference()
interactor_inputs, interactor_outputs = model.build_interactor_self_attention_inference()
proposal_inputs, proposal_outputs = model.build_proposal_prediction_inference()
# print variable names
for v in tf.trainable_variables():
print(v.name)
print(v.get_shape())
print('Loading data ...')
data_provision = DataProvision(options)
print('Restoring model from %s' % options['init_from'])
saver = tf.train.Saver()
saver.restore(sess, options['init_from'])
split = 'test'
print('Start to predict ...')
t0 = time.time()
out_data, recall_at_k = evaluation_metric_util(
options, data_provision, sess, inputs, outputs,
interactor_inputs=interactor_inputs, interactor_outputs=interactor_outputs,
proposal_inputs=proposal_inputs, proposal_outputs=proposal_outputs, split=split)
out_json_file = './results/%d/predict_proposals_%s_nms_%.2f.json' % (
options['train_id'], split, options['nms_threshold'])
mkdirs(os.path.dirname(out_json_file))
print('Writing result json file ...')
with open(out_json_file, 'w') as fid:
json.dump(out_data, fid)
print('Total running time: %f seconds.' % (time.time() - t0))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
options = default_options()
for key, value in options.items():
if type(value) == bool:
parser.add_argument('--%s' % key, action='store_true')
else:
parser.add_argument('--%s' % key, dest=key, type=type(value), default=None)
args = parser.parse_args()
args = vars(args)
for key, value in args.items():
if value is not None:
options[key] = value
test(options)