-
Notifications
You must be signed in to change notification settings - Fork 6
/
train_scannet_IoU.py
438 lines (384 loc) · 19 KB
/
train_scannet_IoU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
"""
Modified from PointNet++: https://github.com/charlesq34/pointnet2
Author: Wenxuan Wu
Date: July 2018
"""
import argparse
import math
import h5py
import numpy as np
import tensorflow as tf
import socket
import importlib
import os
import sys
from datetime import datetime
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'models'))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
sys.path.append(os.path.join(BASE_DIR, 'scannet'))
import provider
import tf_util
import scannet_dataset_rgb
import time
import util
import pointconv_util
colors = util.create_color_palette()
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--model', default='model', help='Model name [default: model]')
parser.add_argument('--log_dir', default='log', help='Log dir [default: log]')
parser.add_argument('--num_point', type=int, default=8192, help='Point Number [default: 8192]')
parser.add_argument('--max_epoch', type=int, default=1601, help='Epoch to run [default: 501]')
parser.add_argument('--batch_size', type=int, default=8, help='Batch Size during training [default: 32]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')
FLAGS = parser.parse_args()
EPOCH_CNT = 0
EPOCH_CNT_WHOLE = 0
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
BANDWIDTH = 0.05
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(BASE_DIR, 'models', FLAGS.model+'.py')
Point_Util = os.path.join(BASE_DIR, 'utils', 'pointconv_util.py')
LOG_DIR = FLAGS.log_dir + datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp %s %s' % (Point_Util, LOG_DIR))
os.system('cp %s %s' % ('PointConv.py', LOG_DIR))
os.system('cp train_scannet_IoU.py %s' % (LOG_DIR)) # bkp of train procedure
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
HOSTNAME = socket.gethostname()
NUM_CLASSES = 21
# Shapenet official train/test split
DATA_PATH = os.path.join(BASE_DIR, 'scannet')
print("start loading training data ...")
TRAIN_DATASET = scannet_dataset_rgb.ScannetDataset(root=DATA_PATH, block_points=NUM_POINT, split='train', with_rgb=True)
print("start loading validation data ...")
TEST_DATASET = scannet_dataset_rgb.ScannetDataset(root=DATA_PATH, block_points=NUM_POINT, split='val', with_rgb=True)
print("start loading whole scene validation data ...")
TEST_DATASET_WHOLE_SCENE = scannet_dataset_rgb.ScannetDatasetWholeScene(root=DATA_PATH, block_points=NUM_POINT, split='val', with_rgb=True)
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def train():
with tf.Graph().as_default():
with tf.device('/gpu:'+str(GPU_INDEX)):
pointclouds_pl, labels_pl, smpws_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT)
is_training_pl = tf.placeholder(tf.bool, shape=())
print(is_training_pl)
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
batch = tf.Variable(0)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
print("--- Get model and loss")
# Get model and loss
boundary_label, boundary_loss = MODEL.get_boundary_model_loss(labels_pl, pointclouds_pl, is_training_pl, NUM_CLASSES, BANDWIDTH, bn_decay=bn_decay)
pred, end_points = MODEL.get_model(boundary_label, pointclouds_pl, is_training_pl, NUM_CLASSES, BANDWIDTH, bn_decay=bn_decay)
loss = MODEL.get_loss(pred, labels_pl, smpws_pl, boundary_loss)
tf.summary.scalar('loss', loss)
correct = tf.equal(tf.argmax(pred, 2), tf.to_int64(labels_pl))
accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE*NUM_POINT)
tf.summary.scalar('accuracy', accuracy)
print("--- Get training operator")
# Get training operator
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=batch)
# Add ops to save and restore all the variables.
saver = tf.train.Saver(max_to_keep=10)
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'), sess.graph)
whole_test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'whole_scene'), sess.graph)
# Init variables
init = tf.global_variables_initializer()
sess.run(init)
#sess.run(init, {is_training_pl: True})
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'smpws_pl': smpws_pl,
'is_training_pl': is_training_pl,
'pred': pred,
'loss': loss,
'train_op': train_op,
'merged': merged,
'step': batch,
'end_points': end_points,
'boundary_loss': boundary_loss}
best_mIoU = -1
best_whole_mIoU = -1
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
start_time = time.time()
train_one_epoch(sess, ops, train_writer, epoch)
end_time = time.time()
log_string('one epoch time: %.4f'%(end_time - start_time))
eval_mIoU = eval_one_epoch(sess, ops, test_writer)
if eval_mIoU > best_mIoU:
best_mIoU = eval_mIoU
if eval_mIoU >= 0.61:
eval_whole_mIoU = eval_whole_scene_one_epoch(sess, ops, test_writer)
if eval_whole_mIoU > best_whole_mIoU:
best_whole_mIoU = eval_whole_mIoU
save_path = saver.save(sess, os.path.join(LOG_DIR, "best_model_epoch_%03d.ckpt"%(epoch)))
log_string("Model saved in file: %s" % save_path)
# Save the variables to disk.
if epoch % 10 == 0:
save_path = saver.save(sess, os.path.join(LOG_DIR, "model.ckpt"))
log_string("Model saved in file: %s" % save_path)
def get_batch_wdp(dataset, idxs, start_idx, end_idx):
bsize = end_idx-start_idx
batch_data = np.zeros((bsize, NUM_POINT, 3))
batch_label = np.zeros((bsize, NUM_POINT), dtype=np.int32)
batch_smpw = np.zeros((bsize, NUM_POINT), dtype=np.float32)
for i in range(bsize):
ps,seg,smpw = dataset[idxs[i+start_idx]]
batch_data[i,...] = ps
batch_label[i,:] = seg
batch_smpw[i,:] = smpw
dropout_ratio = np.random.random()*0.875 # 0-0.875
drop_idx = np.where(np.random.random((ps.shape[0]))<=dropout_ratio)[0]
batch_data[i,drop_idx,:] = batch_data[i,0,:]
batch_label[i,drop_idx] = batch_label[i,0]
batch_smpw[i,drop_idx] *= 0
return batch_data, batch_label, batch_smpw
def get_batch(dataset, idxs, start_idx, end_idx):
bsize = end_idx-start_idx
batch_data = np.zeros((bsize, NUM_POINT, 6))
batch_label = np.zeros((bsize, NUM_POINT), dtype=np.int32)
batch_smpw = np.zeros((bsize, NUM_POINT), dtype=np.float32)
for i in range(bsize):
ps,seg,smpw = dataset[idxs[i+start_idx]]
batch_data[i,...] = ps
batch_label[i,:] = seg
batch_smpw[i,:] = smpw
return batch_data, batch_label, batch_smpw
def train_one_epoch(sess, ops, train_writer, epoch=None):
""" ops: dict mapping from string to tf ops """
is_training = True
# Shuffle train samples
train_idxs = np.arange(0, len(TRAIN_DATASET))
np.random.shuffle(train_idxs)
num_batches = int(len(TRAIN_DATASET)/BATCH_SIZE)
log_string(str(datetime.now()))
total_correct = 0
total_seen = 0
loss_sum = 0
total_iou_deno = 0
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
#batch_data, batch_label, batch_smpw = get_batch_wdp(TRAIN_DATASET, train_idxs, start_idx, end_idx)
batch_data, batch_label, batch_smpw = get_batch(TRAIN_DATASET, train_idxs, start_idx, end_idx)
# Augment batched point clouds by rotation
batch_data[:,:,:3] = provider.rotate_point_cloud_z(batch_data[:,:,:3])
#aug_data = provider.rotate_point_cloud(batch_data)
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['labels_pl']: batch_label,
ops['smpws_pl']:batch_smpw,
ops['is_training_pl']: is_training,}
summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['loss'], ops['pred']], feed_dict=feed_dict)
train_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 2)
correct = np.sum(pred_val == batch_label)
total_correct += correct
total_seen += (BATCH_SIZE*NUM_POINT)
iou_deno = 0
for l in range(NUM_CLASSES):
iou_deno += np.sum((pred_val==l) | (batch_label==l))
total_iou_deno += iou_deno
loss_sum += loss_val
if (batch_idx+1)%10 == 0:
log_string(' -- %03d / %03d --' % (batch_idx+1, num_batches))
log_string('mean loss: %f' % (loss_sum / 10))
log_string('accuracy: %f' % (total_correct / float(total_seen)))
log_string('total IoU: %f' % (total_correct / float(total_iou_deno)))
total_correct = 0
total_seen = 0
loss_sum = 0
total_iou_deno = 0
# evaluate on randomly chopped scenes
def eval_one_epoch(sess, ops, test_writer):
""" ops: dict mapping from string to tf ops """
global EPOCH_CNT
is_training = False
test_idxs = np.arange(0, len(TEST_DATASET))
num_batches = int(len(TEST_DATASET)/BATCH_SIZE)
total_correct = 0
total_seen = 0
loss_sum = 0
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
total_iou_deno_class = [0 for _ in range(NUM_CLASSES)]
log_string(str(datetime.now()))
log_string('---- EPOCH %03d EVALUATION ----'%(EPOCH_CNT))
labelweights = np.zeros(21)
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
batch_data, batch_label, batch_smpw = get_batch(TEST_DATASET, test_idxs, start_idx, end_idx)
batch_data[:,:, :3] = provider.rotate_point_cloud_z(batch_data[:, :, :3])
#aug_data = provider.rotate_point_cloud(batch_data)
bandwidth = BANDWIDTH
feed_dict = {ops['pointclouds_pl']: batch_data,
ops['labels_pl']: batch_label,
ops['smpws_pl']: batch_smpw,
ops['is_training_pl']: is_training}
summary, step, loss_val, pred_val, boundary_loss = sess.run([ops['merged'], ops['step'],
ops['loss'], ops['pred'], ops['boundary_loss']], feed_dict=feed_dict)
test_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 2) # BxN
correct = np.sum((pred_val == batch_label) & (batch_label>0) & (batch_smpw>0)) # evaluate only on 20 categories but not unknown
total_correct += correct
total_seen += np.sum((batch_label>0) & (batch_smpw>0))
loss_sum += loss_val
tmp,_ = np.histogram(batch_label,range(22))
labelweights += tmp
for l in range(NUM_CLASSES):
total_seen_class[l] += np.sum((batch_label==l) & (batch_smpw>0))
total_correct_class[l] += np.sum((pred_val==l) & (batch_label==l) & (batch_smpw>0))
total_iou_deno_class[l] += np.sum(((pred_val==l) | (batch_label==l)) & (batch_smpw>0))
mIoU = np.mean(np.array(total_correct_class[1:])/(np.array(total_iou_deno_class[1:],dtype=np.float)+1e-6))
log_string('eval mean loss: %f' % (loss_sum / float(num_batches)))
log_string('eval point avg class IoU: %f' % (mIoU))
log_string('eval point accuracy: %f'% (total_correct / float(total_seen)))
log_string('eval point avg class acc: %f' % (np.mean(np.array(total_correct_class[1:])/(np.array(total_seen_class[1:],dtype=np.float)+1e-6))))
iou_per_class_str = '------- IoU --------\n'
for l in range(1,NUM_CLASSES):
iou_per_class_str += 'class %d, acc: %f \n' % (l,total_correct_class[l]/float(total_iou_deno_class[l]))
log_string(iou_per_class_str)
EPOCH_CNT += 1
return mIoU
# evaluate on whole scenes, for each block, only sample 8192 points
def eval_whole_scene_one_epoch(sess, ops, test_writer):
""" ops: dict mapping from string to tf ops """
global EPOCH_CNT_WHOLE
is_training = False
num_batches = len(TEST_DATASET_WHOLE_SCENE)
total_correct = 0
total_seen = 0
loss_sum = 0
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
total_iou_deno_class = [0 for _ in range(NUM_CLASSES)]
log_string(str(datetime.now()))
log_string('---- EPOCH %03d EVALUATION WHOLE SCENE----'%(EPOCH_CNT_WHOLE))
labelweights = np.zeros(21)
is_continue_batch = False
extra_batch_data = np.zeros((0,NUM_POINT,6))
extra_batch_label = np.zeros((0,NUM_POINT))
extra_batch_smpw = np.zeros((0,NUM_POINT))
for batch_idx in range(num_batches):
if not is_continue_batch:
batch_data, batch_label, batch_smpw = TEST_DATASET_WHOLE_SCENE[batch_idx]
batch_data = np.concatenate((batch_data,extra_batch_data),axis=0)
batch_label = np.concatenate((batch_label,extra_batch_label),axis=0)
batch_smpw = np.concatenate((batch_smpw,extra_batch_smpw),axis=0)
else:
batch_data_tmp, batch_label_tmp, batch_smpw_tmp = TEST_DATASET_WHOLE_SCENE[batch_idx]
batch_data = np.concatenate((batch_data,batch_data_tmp),axis=0)
batch_label = np.concatenate((batch_label,batch_label_tmp),axis=0)
batch_smpw = np.concatenate((batch_smpw,batch_smpw_tmp),axis=0)
if batch_data.shape[0]<BATCH_SIZE:
is_continue_batch = True
continue
elif batch_data.shape[0]==BATCH_SIZE:
is_continue_batch = False
extra_batch_data = np.zeros((0,NUM_POINT,6))
extra_batch_label = np.zeros((0,NUM_POINT))
extra_batch_smpw = np.zeros((0,NUM_POINT))
else:
is_continue_batch = False
extra_batch_data = batch_data[BATCH_SIZE:,:,:]
extra_batch_label = batch_label[BATCH_SIZE:,:]
extra_batch_smpw = batch_smpw[BATCH_SIZE:,:]
batch_data = batch_data[:BATCH_SIZE,:,:]
batch_label = batch_label[:BATCH_SIZE,:]
batch_smpw = batch_smpw[:BATCH_SIZE,:]
aug_data = batch_data
bandwidth = BANDWIDTH
feed_dict = {ops['pointclouds_pl']: aug_data,
ops['labels_pl']: batch_label,
ops['smpws_pl']: batch_smpw,
ops['is_training_pl']: is_training}
summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['loss'], ops['pred']], feed_dict=feed_dict)
test_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 2) # BxN
correct = np.sum((pred_val == batch_label) & (batch_label>0) & (batch_smpw>0)) # evaluate only on 20 categories but not unknown
total_correct += correct
total_seen += np.sum((batch_label>0) & (batch_smpw>0))
loss_sum += loss_val
tmp,_ = np.histogram(batch_label,range(22))
labelweights += tmp
for l in range(NUM_CLASSES):
total_seen_class[l] += np.sum((batch_label==l) & (batch_smpw>0))
total_correct_class[l] += np.sum((pred_val==l) & (batch_label==l) & (batch_smpw>0))
total_iou_deno_class[l] += np.sum(((pred_val==l) | (batch_label==l)) & (batch_smpw>0))
mIoU = np.mean(np.array(total_correct_class[1:])/(np.array(total_iou_deno_class[1:],dtype=np.float)+1e-6))
log_string('eval whole scene mean loss: %f' % (loss_sum / float(num_batches)))
log_string('eval point avg class IoU: %f' % (mIoU))
log_string('eval whole scene point accuracy: %f'% (total_correct / float(total_seen)))
log_string('eval whole scene point avg class acc: %f' % (np.mean(np.array(total_correct_class[1:])/(np.array(total_seen_class[1:],dtype=np.float)+1e-6))))
labelweights = labelweights[1:].astype(np.float32)/np.sum(labelweights[1:].astype(np.float32))
iou_per_class_str = '------- IoU --------\n'
for l in range(1,NUM_CLASSES):
iou_per_class_str += 'class %d, acc: %f \n' % (l,total_correct_class[l]/float(total_iou_deno_class[l]))
log_string(iou_per_class_str)
EPOCH_CNT_WHOLE += 1
return mIoU
if __name__ == "__main__":
log_string('pid: %s'%(str(os.getpid())))
train()
LOG_FOUT.close()