Skip to content

SocialGoodAI/Category-6D-Pose

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CRNet_IROS

  • This is the official implementation of the paper: Category-Level 6D Object Pose Estimation via Cascaded Relation and Recurrent Reconstruction Networks (IROS 2021).
image

Quick Start

(1) Install Packages

Requires:

  • Python ≥ 3.6
  • Pytorch ≥ 1.0
  • CUDA ≥ 9.0

Compile nn_distance:

ROOT=/path/to/object-deformnet
cd $ROOT/lib/nn_distance
python setup.py install --user

(2) Dataset

Please download the Dataset following SPD.

Unzip and organize these files in $ROOT as follows:

data
├── CAMERA
│   ├── train
│   └── val
├── Real
│   ├── train
│   └── test
├── gts
│   ├── val
│   └── real_test
└── obj_models
    ├── train
    ├── val
    ├── real_train
    └── real_test

results
├── mrcnn_results
│   ├── real_test
│   └── val
└── nocs_results
    ├── real_test
    └── test

(3) Train and Evaluate

# train: python train.py

# test: python evaluate.py

Performance

Please download our models $ROOT/models.

Camera25:

Camera25 3D50 3D75 5°2cm 5°5cm 10°2cm 10°5cm
Our Paper 93.8 88.0 72.0 76.4 81.0 87.7
Released Model 93.7 88.1 71.2 76.5 81.1 88.4

Real275:

Real275 3D50 3D75 5°2cm 5°5cm 10°2cm 10°5cm
Our Paper 79.3 55.9 27.8 34.3 47.2 60.8
Released Model 78.9 57.8 31.5 34.9 51.5 62.8

Citation

If you find our work helpful, please consider citing:

@inproceedings{wang2021category,
  title={Category-level 6d object pose estimation via cascaded relation and recurrent reconstruction networks},
  author={Wang, Jiaze and Chen, Kai and Dou, Qi},
  booktitle={2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  pages={4807--4814},
  year={2021},
  organization={IEEE}
}

You can also refer to our last work SGPA on ICCV2021:

@inproceedings{chen2021sgpa,
  title={Sgpa: Structure-guided prior adaptation for category-level 6d object pose estimation},
  author={Chen, Kai and Dou, Qi},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={2773--2782},
  year={2021}
}

Contact Us

WANG Jiaze: jzwang.cuhk@gmail.com | Homepage

Acknowledgment

Our implementation leverages the code from SPD, NOCS, 3PU and DCP.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published