Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Test on the trained model #43

Open
aniketzz opened this issue Mar 26, 2021 · 8 comments
Open

Test on the trained model #43

aniketzz opened this issue Mar 26, 2021 · 8 comments

Comments

@aniketzz
Copy link

aniketzz commented Mar 26, 2021

I have trained a model with 1 class in SipMask-benchmark. I want to run the inference script using my model. when I tried to execute demo/fcos_demo.py. I have changed the path to the weight file and changed the class values inside demo/fcos_demo.py and predictor.py.

I have renamed the model as FCOS_imprv_R_50_FPN_1x.pth

I got the below error
image

@JialeCao001
Copy link
Owner

@aniketzz Thanks for interest. I donot use fcos_demo.py to show the result. But from the information you provided, it seems that there is a parameter about the number of the classes that needs to be changed to 1.

@aniketzz
Copy link
Author

@JialeCao001 I agree but I have made the changes in all the config files as well as the files that are been used. I do not understand where I am missing. Is there any way to test the model on a video or image?

@JialeCao001
Copy link
Owner

@aniketzz Are you sure that the output channel of training model is 1? it seems 80.

@aniketzz
Copy link
Author

@JialeCao001 Yes I have.
Here is the config:

Versions of relevant libraries:
[pip3] numpy==1.19.2
[pip3] torch==1.4.0
[pip3] torchvision==0.5.0
[conda] blas 1.0 mkl
[conda] mkl 2020.2 256
[conda] mkl-service 2.3.0 py37he8ac12f_0
[conda] mkl_fft 1.3.0 py37h54f3939_0
[conda] mkl_random 1.1.1 py37h0573a6f_0
[conda] pytorch 1.4.0 py3.7_cuda10.0.130_cudnn7.6.3_0 pytorch
[conda] torchvision 0.5.0 py37_cu100 pytorch
Pillow (6.2.2)
2021-03-25 07:27:28,085 fcos_core INFO: Loaded configuration file configs/sipmask/sipmask_R_50_FPN_1x.yaml
2021-03-25 07:27:28,085 fcos_core INFO:

FCOS with improvements

MODEL:
META_ARCHITECTURE: "GeneralizedRCNN"
WEIGHT: "catalog://ImageNetPretrained/MSRA/R-50"
RPN_ONLY: True
SIPMASK_ON: True
BACKBONE:
CONV_BODY: "R-50-FPN-RETINANET"
RESNETS:
BACKBONE_OUT_CHANNELS: 256
RETINANET:
USE_C5: False # FCOS uses P5 instead of C5
SIPMASK:
# normalizing the regression targets with FPN strides
NORM_REG_TARGETS: True
# positioning centerness on the regress branch.
# Please refer to tianzhi0549/FCOS#89 (comment)
CENTERNESS_ON_REG: True
# using center sampling and GIoU.
# Please refer to https://github.com/yqyao/FCOS_PLUS
CENTER_SAMPLING_RADIUS: 1.5
IOU_LOSS_TYPE: "giou"
DATASETS:
TRAIN: ("coco_2017_train",)
TEST: ("coco_2017_val",)
INPUT:
MIN_SIZE_TRAIN: (800,)
MAX_SIZE_TRAIN: 1333
MIN_SIZE_TEST: 800
MAX_SIZE_TEST: 1333
DATALOADER:
SIZE_DIVISIBILITY: 32
SOLVER:
BASE_LR: 0.01
WEIGHT_DECAY: 0.0001
STEPS: (60000, 80000)
MAX_ITER: 90000
IMS_PER_BATCH: 8
WARMUP_METHOD: "constant"

2021-03-25 07:27:28,086 fcos_core INFO: Running with config:
DATALOADER:
ASPECT_RATIO_GROUPING: True
NUM_WORKERS: 2
SIZE_DIVISIBILITY: 32
DATASETS:
TEST: ('coco_2017_val',)
TRAIN: ('coco_2017_train',)
INPUT:
MAX_SIZE_TEST: 1333
MAX_SIZE_TRAIN: 1333
MIN_SIZE_RANGE_TRAIN: (-1, -1)
MIN_SIZE_TEST: 800
MIN_SIZE_TRAIN: (800,)
PIXEL_MEAN: [102.9801, 115.9465, 122.7717]
PIXEL_STD: [1.0, 1.0, 1.0]
TO_BGR255: True
MODEL:
BACKBONE:
CONV_BODY: R-50-FPN-RETINANET
FREEZE_CONV_BODY_AT: 2
USE_GN: False
CLS_AGNOSTIC_BBOX_REG: False
DEVICE: cuda
FBNET:
ARCH: default
ARCH_DEF:
BN_TYPE: bn
DET_HEAD_BLOCKS: []
DET_HEAD_LAST_SCALE: 1.0
DET_HEAD_STRIDE: 0
DW_CONV_SKIP_BN: True
DW_CONV_SKIP_RELU: True
KPTS_HEAD_BLOCKS: []
KPTS_HEAD_LAST_SCALE: 0.0
KPTS_HEAD_STRIDE: 0
MASK_HEAD_BLOCKS: []
MASK_HEAD_LAST_SCALE: 0.0
MASK_HEAD_STRIDE: 0
RPN_BN_TYPE:
RPN_HEAD_BLOCKS: 0
SCALE_FACTOR: 1.0
WIDTH_DIVISOR: 1
FCOS:
CENTERNESS_ON_REG: False
CENTER_SAMPLING_RADIUS: 0.0
FPN_STRIDES: [8, 16, 32, 64, 128]
INFERENCE_TH: 0.05
IOU_LOSS_TYPE: iou
LOSS_ALPHA: 0.25
LOSS_GAMMA: 2.0
NMS_TH: 0.6
NORM_REG_TARGETS: False
NUM_CLASSES: 2
NUM_CONVS: 4
PRE_NMS_TOP_N: 1000
PRIOR_PROB: 0.01
USE_DCN_IN_TOWER: False
FCOS_ON: False
FPN:
USE_GN: False
USE_RELU: False
GROUP_NORM:
DIM_PER_GP: -1
EPSILON: 1e-05
NUM_GROUPS: 32
KEYPOINT_ON: False
MASK_ON: False
META_ARCHITECTURE: GeneralizedRCNN
RESNETS:
BACKBONE_OUT_CHANNELS: 256
DEFORMABLE_GROUPS: 1
NUM_GROUPS: 1
RES2_OUT_CHANNELS: 256
RES5_DILATION: 1
STAGE_WITH_DCN: (False, False, False, False)
STEM_FUNC: StemWithFixedBatchNorm
STEM_OUT_CHANNELS: 64
STRIDE_IN_1X1: True
TRANS_FUNC: BottleneckWithFixedBatchNorm
WIDTH_PER_GROUP: 64
WITH_MODULATED_DCN: False
RETINANET:
ANCHOR_SIZES: (32, 64, 128, 256, 512)
ANCHOR_STRIDES: (8, 16, 32, 64, 128)
ASPECT_RATIOS: (0.5, 1.0, 2.0)
BBOX_REG_BETA: 0.11
BBOX_REG_WEIGHT: 4.0
BG_IOU_THRESHOLD: 0.4
FG_IOU_THRESHOLD: 0.5
INFERENCE_TH: 0.05
LOSS_ALPHA: 0.25
LOSS_GAMMA: 2.0
NMS_TH: 0.4
NUM_CLASSES: 2
NUM_CONVS: 4
OCTAVE: 2.0
PRE_NMS_TOP_N: 1000
PRIOR_PROB: 0.01
SCALES_PER_OCTAVE: 3
STRADDLE_THRESH: 0
USE_C5: False
RETINANET_ON: False
ROI_BOX_HEAD:
CONV_HEAD_DIM: 256
DILATION: 1
FEATURE_EXTRACTOR: ResNet50Conv5ROIFeatureExtractor
MLP_HEAD_DIM: 1024
NUM_CLASSES: 2
NUM_STACKED_CONVS: 4
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_SCALES: (0.0625,)
PREDICTOR: FastRCNNPredictor
USE_GN: False
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 512
BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0)
BG_IOU_THRESHOLD: 0.5
DETECTIONS_PER_IMG: 100
FG_IOU_THRESHOLD: 0.5
NMS: 0.5
POSITIVE_FRACTION: 0.25
SCORE_THRESH: 0.05
USE_FPN: False
ROI_KEYPOINT_HEAD:
CONV_LAYERS: (512, 512, 512, 512, 512, 512, 512, 512)
FEATURE_EXTRACTOR: KeypointRCNNFeatureExtractor
MLP_HEAD_DIM: 1024
NUM_CLASSES: 17
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_SCALES: (0.0625,)
PREDICTOR: KeypointRCNNPredictor
RESOLUTION: 14
SHARE_BOX_FEATURE_EXTRACTOR: True
ROI_MASK_HEAD:
CONV_LAYERS: (256, 256, 256, 256)
DILATION: 1
FEATURE_EXTRACTOR: ResNet50Conv5ROIFeatureExtractor
MLP_HEAD_DIM: 1024
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_SCALES: (0.0625,)
POSTPROCESS_MASKS: False
POSTPROCESS_MASKS_THRESHOLD: 0.5
PREDICTOR: MaskRCNNC4Predictor
RESOLUTION: 14
SHARE_BOX_FEATURE_EXTRACTOR: True
USE_GN: False
RPN:
ANCHOR_SIZES: (32, 64, 128, 256, 512)
ANCHOR_STRIDE: (16,)
ASPECT_RATIOS: (0.5, 1.0, 2.0)
BATCH_SIZE_PER_IMAGE: 256
BG_IOU_THRESHOLD: 0.3
FG_IOU_THRESHOLD: 0.7
FPN_POST_NMS_TOP_N_TEST: 1000
FPN_POST_NMS_TOP_N_TRAIN: 1000
MIN_SIZE: 0
NMS_THRESH: 0.7
POSITIVE_FRACTION: 0.5
POST_NMS_TOP_N_TEST: 500
POST_NMS_TOP_N_TRAIN: 1000
PRE_NMS_TOP_N_TEST: 3000
PRE_NMS_TOP_N_TRAIN: 6000
RPN_HEAD: SingleConvRPNHead
STRADDLE_THRESH: 0
USE_FPN: False
RPN_ONLY: True
SIPMASK:
CENTERNESS_ON_REG: True
CENTER_SAMPLING_RADIUS: 1.5
FPN_STRIDES: [8, 16, 32, 64, 128]
INFERENCE_TH: 0.05
IOU_LOSS_TYPE: giou
LOSS_ALPHA: 0.25
LOSS_GAMMA: 2.0
NMS_TH: 0.6
NORM_REG_TARGETS: True
NUM_CLASSES: 2
NUM_CONVS: 4
PRE_NMS_TOP_N: 1000
PRIOR_PROB: 0.01
USE_DCN_IN_TOWER: False
SIPMASK_ON: True
USE_SYNCBN: False
WEIGHT: catalog://ImageNetPretrained/MSRA/R-50
OUTPUT_DIR: training_dir/sipmask_R_50_FPN_1x
PATHS_CATALOG: /home/ubuntu/SipMask/SipMask-benchmark/fcos_core/config/paths_catalog.py
SOLVER:
BASE_LR: 0.01
BIAS_LR_FACTOR: 2
CHECKPOINT_PERIOD: 2500
DCONV_OFFSETS_LR_FACTOR: 1.0
GAMMA: 0.1
IMS_PER_BATCH: 8
MAX_ITER: 90000
MOMENTUM: 0.9
STEPS: (60000, 80000)
WARMUP_FACTOR: 0.3333333333333333
WARMUP_ITERS: 500
WARMUP_METHOD: constant
WEIGHT_DECAY: 0.0001
WEIGHT_DECAY_BIAS: 0
TEST:
BBOX_AUG:
ENABLED: False
H_FLIP: False
MAX_SIZE: 4000
SCALES: ()
SCALE_H_FLIP: False
DETECTIONS_PER_IMG: 100
EXPECTED_RESULTS: []
EXPECTED_RESULTS_SIGMA_TOL: 4
IMS_PER_BATCH: 8

@JialeCao001
Copy link
Owner

@aniketzz It seems no problem. I am not sure about the problem. Maybe you check the whole things again:)

@aniketzz
Copy link
Author

@JialeCao001 Can You please help me with the inference code to test the trained model on custom data?

@JialeCao001
Copy link
Owner

@aniketzz Hi aniketzz. I am sorry that I am not sure about the problem. I suggest you go through the inference step by step and check the paramter about classes carefully.

@aniketzz
Copy link
Author

aniketzz commented Apr 1, 2021

@JialeCao001, recompiling the code fixed the issue.
I am able to test the custom model but I do not see any bounding box or mask while executing "demo/fcos_demo.py". I am not sure what mistake I am doing here.
image

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants