-
Notifications
You must be signed in to change notification settings - Fork 0
/
Spa_downs.py
171 lines (120 loc) · 5.34 KB
/
Spa_downs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import numpy as np
import torch
import torch.nn as nn
class Spa_Downs(nn.Module):
'''
http://www.realitypixels.com/turk/computergraphics/ResamplingFilters.pdf
'''
def __init__(self, n_planes, factor, kernel_type, phase=0, kernel_width=None, support=None, sigma=None, preserve_size=False):
#n_planes:number of channel
#factor:the times of downsample
super(Spa_Downs, self).__init__()
assert phase in [0, 0.5], 'phase should be 0 or 0.5'
if kernel_type == 'lanczos2':
support = 2
kernel_width = 4 * factor + 1
kernel_type_ = 'lanczos'
elif kernel_type == 'lanczos3':
support = 3
kernel_width = 6 * factor + 1
kernel_type_ = 'lanczos'
elif kernel_type == 'gauss12':
kernel_width = kernel_width
sigma = sigma
kernel_type_ = 'gauss'
elif kernel_type == 'gauss1sq2':
kernel_width = 9
sigma = 1./np.sqrt(2)
kernel_type_ = 'gauss'
elif kernel_type in ['lanczos', 'gauss', 'box']:
kernel_type_ = kernel_type
else:
assert False, 'wrong name kernel'
# note that `kernel width` will be different to actual size for phase = 1/2
self.kernel = get_kernel(factor, kernel_type_, phase, kernel_width, support=support, sigma=sigma)
downsampler = nn.Conv2d(n_planes, n_planes, kernel_size=self.kernel.shape, stride=factor, padding=0)
downsampler.weight.data[:] = 0
downsampler.bias.data[:] = 0
kernel_torch = torch.from_numpy(self.kernel)
for i in range(n_planes):
downsampler.weight.data[i, i] = kernel_torch
self.downsampler_ = downsampler
if preserve_size:
if self.kernel.shape[0] % 2 == 1:
pad = int((self.kernel.shape[0] - 1) / 2.)
else:
pad = int((self.kernel.shape[0] - factor) / 2.)
self.padding = nn.ReplicationPad2d(pad)
self.preserve_size = preserve_size
def forward(self, input):
if self.preserve_size:
x = self.padding(input)
else:
x= input
self.x = x
return self.downsampler_(x)
def get_kernel(factor, kernel_type, phase, kernel_width, support=None, sigma=None):
assert kernel_type in ['lanczos', 'gauss', 'box']
# factor = float(factor)
if phase == 0.5 and kernel_type != 'box':
kernel = np.zeros([kernel_width - 1, kernel_width - 1])
else:
kernel = np.zeros([kernel_width, kernel_width])
if kernel_type == 'box':
assert phase == 0.5, 'Box filter is always half-phased'
kernel[:] = 1./(kernel_width * kernel_width)
elif kernel_type == 'gauss':
assert sigma, 'sigma is not specified'
assert phase != 0.5, 'phase 1/2 for gauss not implemented'
center = (kernel_width + 1.)/2.
#print(center, kernel_width)
sigma_sq = sigma * sigma
for i in range(1, kernel.shape[0] + 1):
for j in range(1, kernel.shape[1] + 1):
di = (i - center)/2.
dj = (j - center)/2.
kernel[i - 1][j - 1] = np.exp(-(di * di + dj * dj)/(2 * sigma_sq))
kernel[i - 1][j - 1] = kernel[i - 1][j - 1]/(2. * np.pi * sigma_sq)
elif kernel_type == 'lanczos':
assert support, 'support is not specified'
center = (kernel_width + 1) / 2.
for i in range(1, kernel.shape[0] + 1):
for j in range(1, kernel.shape[1] + 1):
if phase == 0.5:
di = abs(i + 0.5 - center) / factor
dj = abs(j + 0.5 - center) / factor
else:
di = abs(i - center) / factor
dj = abs(j - center) / factor
pi_sq = np.pi * np.pi
val = 1
if di != 0:
val = val * support * np.sin(np.pi * di) * np.sin(np.pi * di / support)
val = val / (np.pi * np.pi * di * di)
if dj != 0:
val = val * support * np.sin(np.pi * dj) * np.sin(np.pi * dj / support)
val = val / (np.pi * np.pi * dj * dj)
kernel[i - 1][j - 1] = val
else:
assert False, 'wrong method name'
kernel /= kernel.sum()
return kernel
#a = Downsampler(n_planes=3, factor=2, kernel_type='lanczos2', phase='1', preserve_size=True)
#################
# Learnable downsampler
# KS = 32
# dow = nn.Sequential(nn.ReplicationPad2d(int((KS - factor) / 2.)), nn.Conv2d(1,1,KS,factor))
# class Apply(nn.Module):
# def __init__(self, what, dim, *args):
# super(Apply, self).__init__()
# self.dim = dim
# self.what = what
# def forward(self, input):
# inputs = []
# for i in range(input.size(self.dim)):
# inputs.append(self.what(input.narrow(self.dim, i, 1)))
# return torch.cat(inputs, dim=self.dim)
# def __len__(self):
# return len(self._modules)
# downs = Apply(dow, 1)
# downs.type(dtype)(net_input.type(dtype)).size()