-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhelper.py
458 lines (380 loc) · 13.2 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import os
import random
import numpy as np
import torch
import json
import pickle
from torch.nn import functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm
from clip import clip
from torchvision.datasets import ImageNet, ImageFolder, Places365
from my_datasets import *
from utils import (
openai_imagenet_classes,
imagenet_classes,
imagenet_a_lt,
imagenet_r_lt,
)
def load_json(filename):
if not filename.endswith(".json"):
filename += ".json"
with open(filename, "r") as fp:
return json.load(fp)
def set_seed(seed):
print(f"Setting seed {seed}")
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def load_dataset(data_path, dataset_name, custom_loader):
data_path = data_path
if dataset_name == MyDataset.ImageNet:
dataset = ImageNet(
data_path,
split="val",
transform=None,
loader=custom_loader,
)
elif dataset_name == MyDataset.ImageNetV2:
dataset = ImageNetV2Dataset(
location=data_path,
transform=None,
loader=custom_loader,
)
elif dataset_name == MyDataset.ImageNetR:
dataset = ImageFolder(
root=data_path,
transform=None,
loader=custom_loader,
)
elif dataset_name == MyDataset.ImageNetS:
dataset = ImageFolder(
root=data_path,
transform=None,
loader=custom_loader,
)
elif dataset_name == MyDataset.ImageNetA:
dataset = ImageFolder(
root=data_path,
transform=None,
loader=custom_loader,
)
elif dataset_name == MyDataset.CUB:
dataset = CUBDataset(
data_path,
train=False,
transform=None,
loader=custom_loader,
)
elif dataset_name == MyDataset.Food101:
dataset = Food101(
data_path,
transform=None,
loader=custom_loader,
split="test",
download=False,
)
elif dataset_name == MyDataset.OxfordIIITPet:
dataset = OxfordIIITPet(
data_path,
transform=None,
split="test",
loader=custom_loader,
)
elif dataset_name == MyDataset.Place365:
dataset = Places365(
data_path,
transform=None,
loader=custom_loader,
download=False,
split="val",
small=False,
)
elif dataset_name == MyDataset.DTD:
dataset = DTD(
data_path,
# transform=None,
loader=custom_loader,
split="test",
download=False,
)
return dataset
def wordify(string):
word = string.replace("_", " ")
return word
def load_classes(dataset_name):
with open(
f"features/{dataset_name}/{dataset_name}.json",
"r",
) as f:
classes = json.load(f)
wordify_classes = []
for c in classes:
wordify_classes.append(wordify(c))
return wordify_classes
def generate_weights(
method,
model,
dataset_name,
tt_scale=None,
device=None,
):
templates = None
make_sentence = False
is_template = True
# if dataset start with imagenet
if dataset_name.startswith(MyDataset.ImageNet):
classes = (
openai_imagenet_classes
if method in ["clip-d", "waffle"]
else imagenet_classes
)
else:
classes = load_classes(dataset_name)
print(f"Creating {method} text embeddings...")
if method != "clip":
if method == "ours":
load_file = "cupl"
elif method == "cupl":
load_file = "cupl"
elif method == "waffle":
load_file = "clip-d"
else:
load_file = method
with open(f"prompts/{dataset_name}/{load_file}.json") as f:
templates = json.load(f)
if method in ["waffle", "clip-d", "cupl", "ours"]:
is_template = False
if method == "clip-d":
make_sentence = True
if method == "waffle":
templates = construct_random(templates)
zeroshot_weights = zeroshot_classifier(
model,
classes,
templates,
is_template,
make_sentence,
tt_scale,
device,
)
return zeroshot_weights
def load_precomputed_features(
model,
dataset_name: str,
model_size: str,
alpha: float,
n_samples: int,
batch_size: int,
num_workers: int,
data_path: str,
custom_loader: callable,
device: torch.device,
):
save_file = (dataset_name + "-" + model_size).replace("/", "-")
save_root = f"features/{dataset_name}"
# if save_root not exist, create it
if not os.path.exists(save_root):
os.makedirs(save_root)
filename = os.path.join(save_root, f"{save_file}-{alpha}-{n_samples}.pkl")
if os.path.exists(filename):
print(f"Loading {filename}...")
load_res = pickle.load(open(filename, "rb"))
else:
print(f"File {filename} not found, precomputing features...")
dataset = load_dataset(
data_path=data_path,
dataset_name=dataset_name,
custom_loader=custom_loader,
)
dataloader = DataLoader(
dataset,
batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True,
)
# CUB classes need to be manually processed
# if hasattr(dataset, "classes") and dataset_name != MyDataset.CUB:
# classes = dataset.classes
# classes_file = os.path.join(save_root, f"{dataset_name}.json")
# if not os.path.exists(classes_file):
# with open(classes_file, "w") as f:
# json.dump(classes, f)
precomputed_features = []
image_features_tensor = []
target = []
with torch.no_grad():
for batch in tqdm(dataloader):
images, labels = [p.to(device) for p in batch]
b, ns = images.shape[:2]
images = images.flatten(0, 1)
image_features = model.encode_image(images)
image_features = F.normalize(image_features)
image_features = image_features.view(b, ns, -1) # b,ns,d
patch_features = image_features[:, 1:]
image_features = image_features[:, :1]
weight_image = (image_features * patch_features).sum(
dim=-1, keepdim=True
)
patch_with_weights = torch.cat([patch_features, weight_image], -1)
precomputed_features.append(patch_with_weights)
target.append(labels)
image_features_tensor.append(image_features.squeeze(1))
load_res = {
"patches": torch.cat(precomputed_features, dim=0),
"images": torch.cat(image_features_tensor, dim=0),
"labels": torch.cat(target, dim=0),
}
os.makedirs(save_root, exist_ok=True)
pickle.dump(load_res, open(filename, "wb"))
precomputed_features = load_res["patches"].to(device)
target = load_res["labels"].to(device)
image_features_tensor = load_res["images"].to(device)
return precomputed_features, target, image_features_tensor
def make_descriptor_sentence(descriptor):
if descriptor.startswith("a") or descriptor.startswith("an"):
return f"which is {descriptor}"
elif (
descriptor.startswith("has")
or descriptor.startswith("often")
or descriptor.startswith("typically")
or descriptor.startswith("may")
or descriptor.startswith("can")
):
return f"which {descriptor}"
elif descriptor.startswith("used"):
return f"which is {descriptor}"
else:
return f"which has {descriptor}"
def zeroshot_classifier(
model,
textnames,
templates=None,
is_template=True,
make_sentence=False,
tt_scale=None,
device=None,
):
with torch.no_grad():
zeroshot_weights = []
for i in tqdm(range(len(textnames))):
if not is_template:
texts = []
for t in templates[textnames[i]]:
if make_sentence:
desc_sen = make_descriptor_sentence(t)
texts.append(f"{textnames[i]}, {desc_sen}")
else:
texts.append(t)
elif templates:
texts = [template.format(textnames[i]) for template in templates]
else:
texts = [f"a photo of a {textnames[i]}."]
if i == 0:
print(texts)
if tt_scale is not None:
label = f"a photo of a {textnames[i]}."
label_tokens = clip.tokenize(label, truncate=True).to(device)
label_embeddings = model.encode_text(label_tokens)
label_embeddings /= label_embeddings.norm(dim=-1, keepdim=True)
texts_tensor = clip.tokenize(texts, truncate=True).to(device)
class_embeddings = model.encode_text(texts_tensor)
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
if tt_scale is not None:
weight = class_embeddings @ label_embeddings.T
weight = (weight * tt_scale).softmax(dim=0)
class_embedding = (class_embeddings * weight).sum(dim=0)
class_embedding /= class_embedding.norm()
else:
class_embedding = class_embeddings.mean(dim=0)
class_embedding /= class_embedding.norm()
zeroshot_weights.append(class_embedding)
zeroshot_weights = torch.stack(zeroshot_weights, dim=1).to(device)
return zeroshot_weights
def construct_random(gpt3_prompts):
"""
reference: https://github.com/ExplainableML/WaffleCLIP.git
"""
key_list = list(gpt3_prompts.keys())
# Get complete list of available descriptions.
descr_list = [list(values) for values in gpt3_prompts.values()]
descr_list = np.array([x for y in descr_list for x in y])
### Descriptor Makers.
structured_descriptor_builder = (
lambda item, cls: f"A photo of a {wordify(cls)}, {make_descriptor_sentence(item)}."
)
word_list = pickle.load(open("features/word_list.pkl", "rb"))
avg_num_words = int(
np.max(
[
np.round(np.mean([len(wordify(x).split(" ")) for x in key_list])),
1,
]
)
)
avg_word_length = int(
np.round(
np.mean(
[np.mean([len(y) for y in wordify(x).split(" ")]) for x in key_list]
)
)
)
word_list = [x[:avg_word_length] for x in word_list]
# (Lazy solution) Extract list of available random characters from gpt description list. Ideally we utilize a separate list.
character_list = [x.split(" ") for x in descr_list]
character_list = [
x.replace(",", "").replace(".", "")
for x in np.unique([x for y in character_list for x in y])
]
character_list = np.unique(list("".join(character_list)))
num_spaces = (
int(np.round(np.mean([np.sum(np.array(list(x)) == " ") for x in key_list]))) + 1
)
num_chars = int(
np.ceil(np.mean([np.max([len(y) for y in x.split(" ")]) for x in key_list]))
)
num_chars += num_spaces - num_chars % num_spaces
sample_key = ""
for s in range(num_spaces):
for _ in range(num_chars // num_spaces):
sample_key += "a"
if s < num_spaces - 1:
sample_key += " "
gpt3_prompts = {key: [] for key in gpt3_prompts.keys()}
for key in key_list:
for _ in range(15):
base_word = ""
for a in range(avg_num_words):
base_word += np.random.choice(word_list, 1, replace=False)[0]
if a < avg_num_words - 1:
base_word += " "
gpt3_prompts[key].append(structured_descriptor_builder(base_word, key))
noise_word = ""
use_key = sample_key if len(key) >= len(sample_key) else key
for c in sample_key:
if c != " ":
noise_word += np.random.choice(character_list, 1, replace=False)[0]
else:
noise_word += ", "
gpt3_prompts[key].append(structured_descriptor_builder(noise_word, key))
match_key = np.random.choice(key_list)
gpt3_prompts = {key: gpt3_prompts[match_key] for key in key_list}
for key in gpt3_prompts:
gpt3_prompts[key] = [
x.replace(wordify(match_key), wordify(key)) for x in gpt3_prompts[key]
]
return gpt3_prompts
def accuracy(output, target, n, dataset_name):
# Get index of the maximum value as prediction
if dataset_name.startswith(MyDataset.ImageNetA):
_, pred = output[:, imagenet_a_lt].max(1)
elif dataset_name.startswith(MyDataset.ImageNetR):
_, pred = output[:, imagenet_r_lt].max(1)
else:
_, pred = output.max(1)
# Compare prediction with target
correct = pred.eq(target)
# Calculate top-1 accuracy
return float(correct.float().sum().cpu().numpy()) / n * 100