forked from UP-RS-ESP/TanDEM-SRTM-dh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
03_blocked_shifting.py
385 lines (323 loc) · 15.2 KB
/
03_blocked_shifting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# -*- coding: utf-8 -*-
"""
Apply blocked shifting to a co-registered, destriped SRTM-C tile using TanDEM-X reference surface
Author: Ben Purinton {purinton@uni-potsdam.de}
"""
# This script attempts to rectify remaining complex biases in the 1 arcsec SRTM-C
# following co-registration and destriping
# In addition to the SRTM-C and TanDEM-X tile, this script also requires the TanDEM-X
# water indication mask (WAM) raster to remove problematic pixels prior to destripings
# Input SRTM and TanDEM tiles must be 1 arcsecond unprojected (WGS84), thus
# of size 3601 * 3601 pixels. We remove the last row and last column of pixels
# and use factors of 3600 to break the tile into equal squares ranging in size
# from 1.35-7.2 km. We add a column and row of NaN values to output a block
# shifted raster of the same original size (3601 * 3601 pixels).
# The script will output the following:
# Figure displaying the results in map-view
# Block shifted version of the input SRTM-C tile
#%% import modules
import os, sys
import numpy as np
from scipy import stats
from osgeo import gdal, gdalnumeric
import matplotlib.pyplot as plt
# ignore some errors that arise
gdal.UseExceptions()
errors = np.seterr(all="ignore")
#%% VARIABLE NAMES (SET THESE)
# base path
bd = "/path/to/working/directory/"
# co-registered, destriped SRTM tile
srtm = bd + "destripe/S24W066/srtm_1arcsec_S24W066_aspcorr_destripe.tif"
# original TanDEM tile
tdm = bd + "tandems/tandem_1arcsec_S24W066.tif"
# water indication mask (WAM) from TanDEM auxiliary rasters used to threshold out bad pixels
WAM = bd + "tandems/auxiliary/tandem_1arcsec_S24W066_WAM.tif"
# directory to output results based on current tile Lat/Lon
out_dir = bd + "blockshift/S24W066/"
# short name for figures (without spaces), choose something representative of the chosen parameters
shortname = "S24W066_SRTM_blockshift"
# scale factor for generating slope and hillshade from unprojected DEMs in GDAL
scale_factor = 111120 # DO NOT CHANGE
# resolution of SRTM / TanDEM in approximate meters
resolution_m = 30. # DO NOT CHANGE
# parameters for shifting
# blocks to run ranging in size from 1.35-7.2 km
chunks = [15., 30., 60., 80.] # these are all factors of 3600 (number of rows and columns in original tile minus one)
max_shft = 1 # maximum allowable vertical shift in meters, suggested values 0.5-1 m to allow minimal influence of outliers
#%% Functions
def array2rast(array, rast_in, rast_out, NDV = -9999, filetype=gdal.GDT_Float32):
"""
Use GDAL to take an input array and a given raster and output a raster with the
same spatial referencing
"""
ds = gdal.Open(rast_in)
# check the array size is correct for the georeferencing
if ds.GetRasterBand(1).YSize == array.shape[0] and ds.GetRasterBand(1).XSize == array.shape[1]:
print("array is the right size")
else:
print("array is the wrong size")
sys.exit()
driver = gdal.GetDriverByName("GTiff")
driver.Register()
outRaster = driver.Create(rast_out, ds.GetRasterBand(1).XSize,
ds.GetRasterBand(1).YSize, 1, filetype)
gt = ds.GetGeoTransform()
cs = ds.GetProjection()
outRaster.SetGeoTransform(gt)
outRaster.SetProjection(cs)
outband = outRaster.GetRasterBand(1)
outband.WriteArray(array,0,0)
outband.SetNoDataValue(NDV)
outband.FlushCache()
del driver, outRaster, gt, cs, outband, ds
def RMSE(x):
"""
Take the root mean squared error of given array
"""
return np.sqrt(np.nansum(x**2)/x[np.isfinite(x)].size)
def getXYgrid(dem):
"""
takes input geo raster and outputs numpy arrays of X and Y coordinates (center of pixel)
"""
# create X and Y
ds = gdal.Open(dem)
s = gdalnumeric.LoadFile(dem)
cols = s.shape[1]
rows = s.shape[0]
gt = ds.GetGeoTransform()
ds = None
# size of grid (minx, stepx, 0, maxy, 0, -stepy)
minx, maxy = gt[0], gt[3]
maxx, miny = gt[0] + gt[1] * cols, gt[3] + gt[5] * rows
step = gt[1]
# center of pixel
ygrid = np.arange(miny + (step / 2), maxy, step)
xgrid = np.arange(minx + (step / 2), maxx, step)
xgrid, ygrid = np.meshgrid(xgrid, ygrid)
ygrid = np.flipud(ygrid)
return xgrid, ygrid
def binby(x, y, nbins=50):
"""
Wrapper function for scipy.stats.binned_statistic. Takes input array and bins
x by y over a give number of bins. Outputs dictionary with
{bin center, bin median, bin 25th percentile, bin 75th percentile}
Easy to modify and add more dictionary items.
"""
bins = np.linspace(np.floor(np.nanmin(x)), np.ceil(np.nanmax(x)), nbins)
bin_med, bin_edge, bin_num = stats.binned_statistic(x, y, statistic=lambda y: np.nanmedian(y), bins=bins)
bin_25p, _, _ = stats.binned_statistic(x, y, statistic=lambda y: np.nanpercentile(y, 25), bins=bins)
bin_75p, _, _ = stats.binned_statistic(x, y, statistic=lambda y: np.nanpercentile(y, 75), bins=bins)
# add any other stats here with same form as above
bin_width = bin_edge[1] - bin_edge[0]
bin_centers = bin_edge[1:] - bin_width/2
out = {"bin_centers":bin_centers, "bin_medians":bin_med, "bin_25thp":bin_25p, "bin_75thp":bin_75p}
return out
def blockshaped(arr, nrows, ncols):
"""
Return an array of shape (n, nrows, ncols) where
n * nrows * ncols = arr.size
If arr is a 2D array, the returned array should look like n subblocks with
each subblock preserving the "physical" layout of arr.
source = https://stackoverflow.com/questions/16856788/slice-2d-array-into-smaller-2d-arrays
"""
h, w = arr.shape
sliced = (arr.reshape(h//nrows, nrows, -1, ncols)
.swapaxes(1,2)
.reshape(-1, nrows, ncols))
return sliced
def unblockshaped(arr, h, w):
"""
Return an array of shape (h, w) where
h * w = arr.size
If arr is of shape (n, nrows, ncols), n sublocks of shape (nrows, ncols),
then the returned array preserves the "physical" layout of the sublocks.
source = https://stackoverflow.com/questions/16856788/slice-2d-array-into-smaller-2d-arrays
"""
n, nrows, ncols = arr.shape
whole = (arr.reshape(h//nrows, -1, nrows, ncols)
.swapaxes(1,2)
.reshape(h, w))
return whole
#%% Run blocked shifting!
# create output directory
if not os.path.exists(out_dir):
os.makedirs(out_dir)
# get no data value from each dataset
ds = gdal.Open(srtm)
ndv_srtm = ds.GetRasterBand(1).GetNoDataValue()
ds = None
ds = gdal.Open(tdm)
ndv_tdm = ds.GetRasterBand(1).GetNoDataValue()
ds = None
# load datasets
t = gdalnumeric.LoadFile(tdm)
t[t==ndv_tdm]=np.nan
# mask out water pixels using TanDEM-X WAM
w = gdalnumeric.LoadFile(WAM)
t[w >= 33] = np.nan
s = gdalnumeric.LoadFile(srtm)
s[s==ndv_srtm]=np.nan
# calculate dh
dh = t-s
# we remove the last row and column of pixels to create even 3601*3601 square for blocking
if dh.shape[0]==3601 and dh.shape[1]==3601:
print("unprojected shape of raster in pixels:")
print(dh.shape)
print("removing a row and column for even factoring")
dh = dh[0:-1,0:-1]
else:
print("somethings wrong, the shape of the unprojected rasters\nshould be 3601*3601, but the shape here is:")
print(dh.shape)
print("ending script, check the input DEMs")
sys.exit()
# get xy grid
xgrid, ygrid = getXYgrid(tdm)
# load hillshade
hillshade = tdm.split(".")[0]+"_HS.tif"
if not os.path.exists(hillshade):
gdal.DEMProcessing(hillshade, tdm, 'hillshade', scale=scale_factor)
hs = gdalnumeric.LoadFile(hillshade)
hs = hs[0:-1,0:-1]
os.remove(hillshade)
# get slope for weighting the boxes
slope = tdm.split(".")[0] + "_SLOPE.tif"
if not os.path.exists(slope):
gdal.DEMProcessing(slope, tdm, 'slope', scale=scale_factor)
slp = gdalnumeric.LoadFile(slope)
os.remove(slope)
slp[slp<0]=np.nan
slp = slp[0:-1,0:-1]
# number of rows and columns, should be 3600*3600
rows = dh.shape[0]
cols = dh.shape[1]
# loop through all the chunk sizes
for chunk in chunks:
row_chunk=chunk
col_chunk=chunk
# block the dh and slope
dhB = blockshaped(dh, int(dh.shape[0]/row_chunk), int(dh.shape[1]/col_chunk))
slB = blockshaped(slp, int(dh.shape[0]/row_chunk), int(dh.shape[1]/col_chunk))
blocks = int(dhB.shape[0])
height = int(dhB.shape[1]*resolution_m)
width = int(dhB.shape[2]*resolution_m)
print()
print("running a round of blocked shifting on SRTM-C")
print("there are %i blocks with each %i m wide and %i m tall" % (blocks, height, width))
save_out = out_dir + srtm.split("/")[-1].split(".")[0]+"_blockshift_"+str(int(height))+"m.tif"
if not os.path.exists(save_out):
# median dh in each block
# empty holder for medians
medsDH = np.ones((blocks))*np.nan
dhB_meds = dhB.copy()
medsSL = np.ones((blocks))*np.nan
slB_meds = slB.copy()
# run each block, saving the stats in the appropriate array
for k in range(0, blocks):
# pull out a chunk
dhi = dhB[k]
dhi = dhi[~np.isnan(dhi)]
medsDH[k] = np.nanmedian(dhi)
# replace values in block with median value
dhB_meds[k,:,:] = medsDH[k]
# same for slope
sli = slB[k]
sli = sli[~np.isnan(sli)]
medsSL[k] = np.nanmedian(sli)
slB_meds[k,:,:] = medsSL[k]
# unblock the median grids
dh_grid_meds=unblockshaped(dhB_meds, int(rows), int(cols))
sl_grid_meds=unblockshaped(slB_meds, int(rows), int(cols))
# add NaN row and column to make size 3601*3601 again
dh_grid_meds = np.insert(dh_grid_meds, dh_grid_meds.shape[0], np.nan, axis=0)
dh_grid_meds = np.insert(dh_grid_meds, dh_grid_meds.shape[1], np.nan, axis=1)
sl_grid_meds = np.insert(sl_grid_meds, sl_grid_meds.shape[0], np.nan, axis=0)
sl_grid_meds = np.insert(sl_grid_meds, sl_grid_meds.shape[1], np.nan, axis=1)
# shift the grid blocks by medians weighting by slope and setting limit on shift amount
weight_gridB = dhB_meds/slB_meds
weight_grid=unblockshaped(weight_gridB, int(rows), int(cols))
weight_grid = np.insert(weight_grid, weight_grid.shape[0], np.nan, axis=0)
weight_grid = np.insert(weight_grid, weight_grid.shape[1], np.nan, axis=1)
dhB_shft = dhB.copy()
for k in range(0, blocks):
if abs(weight_gridB[k][0,0]) < max_shft:
dhB_shft[k] = dhB_shft[k] - weight_gridB[k]
else:
if weight_gridB[k][0,0] < 0:
dhB_shft[k] = dhB_shft[k] + max_shft
if weight_gridB[k][0,0] > 0:
dhB_shft[k] = dhB_shft[k] - max_shft
dh_shft=unblockshaped(dhB_shft, int(rows), int(cols))
dh_shft = np.insert(dh_shft, dh_shft.shape[0], np.nan, axis=0)
dh_shft = np.insert(dh_shft, dh_shft.shape[1], np.nan, axis=1)
# plot showing results
fig = plt.figure(figsize=(18,6))
ax = plt.subplot(141)
im2 = plt.imshow(dh, cmap="RdBu", alpha=1, vmin=-5, vmax=5,
extent=[xgrid.min(), xgrid.max(), ygrid.min(), ygrid.max()])
plt.title("A: Destriped $dh$\n(med = %0.2f, RMSE = %0.2f)"%(np.nanmedian(dh), RMSE(dh)),
fontsize=12, fontweight='bold', loc='left')
plt.ylabel('Latitude (deg)')
plt.grid()
plt.xlabel("Longitude (deg)")
cbaxes = fig.add_axes([0.15, 0.075, 0.13, 0.02])
cbar = fig.colorbar(mappable=im2, cax=cbaxes, cmap="RdBu", ticks=[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5],
label="$dh$ (m)\nTanDEM-X$-$SRTM-C", orientation = 'horizontal')
cbar.ax.set_yticklabels([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5])
ax = plt.subplot(142)
ax.imshow(hs, cmap="gray", extent=[xgrid.min(), xgrid.max(), ygrid.min(), ygrid.max()])
im2 = ax.imshow(dh_grid_meds, cmap="BrBG", alpha=0.8, vmin=-max_shft-1, vmax=max_shft+1,
extent=[xgrid.min(), xgrid.max(), ygrid.min(), ygrid.max()])
plt.title("B: Blocked Medians",
fontsize=12, fontweight='bold', loc='left')
plt.grid()
plt.xlabel("Longitude (deg)")
cbaxes = fig.add_axes([0.35, 0.075, 0.13, 0.02])
cbar = fig.colorbar(mappable=im2, cax=cbaxes, cmap="RdBu", ticks=[np.linspace(-max_shft-1, max_shft+1, 5)],
label="Blocked Median $dh$ (m)", orientation = 'horizontal')
ax = plt.subplot(143)
ax.imshow(hs, cmap="gray", extent=[xgrid.min(), xgrid.max(), ygrid.min(), ygrid.max()])
im2 = ax.imshow(weight_grid, cmap="BrBG", alpha=0.8, vmin=-max_shft, vmax=max_shft,
extent=[xgrid.min(), xgrid.max(), ygrid.min(), ygrid.max()])
plt.title("C: Blocked Medians\nNormed by Slope",
fontsize=12, fontweight='bold', loc='left')
plt.grid()
plt.xlabel("Longitude (deg)")
cbaxes = fig.add_axes([0.55, 0.075, 0.13, 0.02])
cbar = fig.colorbar(mappable=im2, cax=cbaxes, cmap="RdBu", ticks=[np.linspace(-max_shft, max_shft, 5)],
label="Blocked Normed Median $dh$ (m)", orientation = 'horizontal')
ax = plt.subplot(144)
im2 = plt.imshow(dh_shft, cmap="RdBu", alpha=1, vmin=-5, vmax=5,
extent=[xgrid.min(), xgrid.max(), ygrid.min(), ygrid.max()])
plt.title("D: Block Shifted $dh$\n(med = %0.2f, RMSE = %0.2f)"%(np.nanmedian(dh_shft), RMSE(dh_shft)),
fontsize=12, fontweight='bold', loc='left')
plt.grid()
plt.xlabel("Longitude (deg)")
cbaxes = fig.add_axes([0.75, 0.075, 0.13, 0.02])
cbar = fig.colorbar(mappable=im2, cax=cbaxes, cmap="RdBu", ticks=[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5],
label="$dh$ (m)\nTanDEM-X$-$SRTM-C", orientation = 'horizontal')
cbar.ax.set_yticklabels([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5])
plt.savefig(out_dir + shortname + "_blocked_shifting_"+str(int(height))+"m.png", bbox_inches="tight", dpi=300)
plt.close()
# create new srtm applying the block shifts to it and outputting a GeoTiff
s_newB = blockshaped(gdalnumeric.LoadFile(srtm)[0:-1,0:-1], int(dh.shape[0]/row_chunk),
int(dh.shape[1]/col_chunk))
# loop through all blocks and shift by weighted amount
for k in range(0, blocks):
if abs(weight_gridB[k][0,0]) < max_shft:
s_newB[k] = s_newB[k] + weight_gridB[k]
else:
if weight_gridB[k][0,0] < 0:
s_newB[k] = s_newB[k] - max_shft
if weight_gridB[k][0,0] > 0:
s_newB[k] = s_newB[k] + max_shft
# unblock the shifted grid
s_new=unblockshaped(s_newB, int(rows), int(cols))
# again add row and column of NaN values to make size 3601*3601 pixels
s_new = np.insert(s_new, s_new.shape[0], np.nan, axis=0)
s_new = np.insert(s_new, s_new.shape[1], np.nan, axis=1)
# output tiff
array2rast(s_new, srtm, save_out)
print("blocked shifting complete on SRTM-C: %s"%save_out)
else:
print("%s already exists"%save_out)