-
Notifications
You must be signed in to change notification settings - Fork 21
/
utils.py
539 lines (460 loc) · 17.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import cv2
import itertools
import numpy as np
import random
import torch
import torch.nn.functional as F
import torch.nn as nn
from PIL import Image, ImageOps
import matplotlib.pyplot as plt
def random_blur_kernel(probs, N_blur, sigrange_gauss, sigrange_line, wmin_line):
N = N_blur
coords = torch.from_numpy(np.stack(np.meshgrid(range(N_blur), range(N_blur), indexing='ij'), axis=-1)) - (0.5 * (N-1)) # (7,7,2)
manhat = torch.sum(torch.abs(coords), dim=-1) # (7, 7)
# nothing, default
vals_nothing = (manhat < 0.5).float() # (7, 7)
# gauss
sig_gauss = torch.rand(1)[0] * (sigrange_gauss[1] - sigrange_gauss[0]) + sigrange_gauss[0]
vals_gauss = torch.exp(-torch.sum(coords ** 2, dim=-1) /2. / sig_gauss ** 2)
# line
theta = torch.rand(1)[0] * 2.* np.pi
v = torch.FloatTensor([torch.cos(theta), torch.sin(theta)]) # (2)
dists = torch.sum(coords * v, dim=-1) # (7, 7)
sig_line = torch.rand(1)[0] * (sigrange_line[1] - sigrange_line[0]) + sigrange_line[0]
w_line = torch.rand(1)[0] * (0.5 * (N-1) + 0.1 - wmin_line) + wmin_line
vals_line = torch.exp(-dists ** 2 / 2. / sig_line ** 2) * (manhat < w_line) # (7, 7)
t = torch.rand(1)[0]
vals = vals_nothing
if t < (probs[0] + probs[1]):
vals = vals_line
else:
vals = vals
if t < probs[0]:
vals = vals_gauss
else:
vals = vals
v = vals / torch.sum(vals) # 归一化 (7, 7)
z = torch.zeros_like(v)
f = torch.stack([v,z,z, z,v,z, z,z,v], dim=0).reshape([3, 3, N, N])
return f
def get_rand_transform_matrix(image_size, d, batch_size):
Ms = np.zeros((batch_size, 2, 3, 3))
for i in range(batch_size):
tl_x = random.uniform(-d, d) # Top left corner, top
tl_y = random.uniform(-d, d) # Top left corner, left
bl_x = random.uniform(-d, d) # Bot left corner, bot
bl_y = random.uniform(-d, d) # Bot left corner, left
tr_x = random.uniform(-d, d) # Top right corner, top
tr_y = random.uniform(-d, d) # Top right corner, right
br_x = random.uniform(-d, d) # Bot right corner, bot
br_y = random.uniform(-d, d) # Bot right corner, right
rect = np.array([
[tl_x, tl_y],
[tr_x + image_size, tr_y],
[br_x + image_size, br_y + image_size],
[bl_x, bl_y + image_size]], dtype = "float32")
dst = np.array([
[0, 0],
[image_size, 0],
[image_size, image_size],
[0, image_size]], dtype = "float32")
M = cv2.getPerspectiveTransform(rect, dst)
M_inv = np.linalg.inv(M)
Ms[i, 0, :, :] = M_inv
Ms[i, 1, :, :] = M
Ms = torch.from_numpy(Ms).float()
return Ms
def get_rnd_brightness_torch(rnd_bri, rnd_hue, batch_size):
rnd_hue = torch.FloatTensor(batch_size, 3, 1, 1).uniform_(-rnd_hue, rnd_hue)
rnd_brightness = torch.FloatTensor(batch_size, 1, 1, 1).uniform_(-rnd_bri, rnd_bri)
return rnd_hue + rnd_brightness
# reference: https://github.com/mlomnitz/DiffJPEG.git
y_table = np.array(
[[16, 11, 10, 16, 24, 40, 51, 61], [12, 12, 14, 19, 26, 58, 60,
55], [14, 13, 16, 24, 40, 57, 69, 56],
[14, 17, 22, 29, 51, 87, 80, 62], [18, 22, 37, 56, 68, 109, 103,
77], [24, 35, 55, 64, 81, 104, 113, 92],
[49, 64, 78, 87, 103, 121, 120, 101], [72, 92, 95, 98, 112, 100, 103, 99]],
dtype=np.float32).T
y_table = nn.Parameter(torch.from_numpy(y_table))
c_table = np.empty((8, 8), dtype=np.float32)
c_table.fill(99)
c_table[:4, :4] = np.array([[17, 18, 24, 47], [18, 21, 26, 66],
[24, 26, 56, 99], [47, 66, 99, 99]]).T
c_table = nn.Parameter(torch.from_numpy(c_table))
# 1. RGB -> YCbCr
class rgb_to_ycbcr_jpeg(nn.Module):
""" Converts RGB image to YCbCr
Input:
image(tensor): batch x 3 x height x width
Outpput:
result(tensor): batch x height x width x 3
"""
def __init__(self):
super(rgb_to_ycbcr_jpeg, self).__init__()
matrix = np.array(
[[0.299, 0.587, 0.114], [-0.168736, -0.331264, 0.5],
[0.5, -0.418688, -0.081312]], dtype=np.float32).T
self.shift = nn.Parameter(torch.tensor([0., 128., 128.]))
self.matrix = nn.Parameter(torch.from_numpy(matrix))
def forward(self, image):
image = image.permute(0, 2, 3, 1)
result = torch.tensordot(image, self.matrix, dims=1) + self.shift
result.view(image.shape)
return result
# 2. Chroma subsampling
class chroma_subsampling(nn.Module):
""" Chroma subsampling on CbCv channels
Input:
image(tensor): batch x height x width x 3
Output:
y(tensor): batch x height x width
cb(tensor): batch x height/2 x width/2
cr(tensor): batch x height/2 x width/2
"""
def __init__(self):
super(chroma_subsampling, self).__init__()
def forward(self, image):
image_2 = image.permute(0, 3, 1, 2).clone()
avg_pool = nn.AvgPool2d(kernel_size=2, stride=(2, 2),
count_include_pad=False)
cb = avg_pool(image_2[:, 1, :, :].unsqueeze(1))
cr = avg_pool(image_2[:, 2, :, :].unsqueeze(1))
cb = cb.permute(0, 2, 3, 1)
cr = cr.permute(0, 2, 3, 1)
return image[:, :, :, 0], cb.squeeze(3), cr.squeeze(3)
# 3. Block splitting
class block_splitting(nn.Module):
""" Splitting image into patches
Input:
image(tensor): batch x height x width
Output:
patch(tensor): batch x h*w/64 x h x w
"""
def __init__(self):
super(block_splitting, self).__init__()
self.k = 8
def forward(self, image):
height, width = image.shape[1:3]
batch_size = image.shape[0]
image_reshaped = image.view(batch_size, height // self.k, self.k, -1, self.k)
image_transposed = image_reshaped.permute(0, 1, 3, 2, 4)
return image_transposed.contiguous().view(batch_size, -1, self.k, self.k)
# 4. DCT
class dct_8x8(nn.Module):
""" Discrete Cosine Transformation
Input:
image(tensor): batch x height x width
Output:
dcp(tensor): batch x height x width
"""
def __init__(self):
super(dct_8x8, self).__init__()
tensor = np.zeros((8, 8, 8, 8), dtype=np.float32)
for x, y, u, v in itertools.product(range(8), repeat=4):
tensor[x, y, u, v] = np.cos((2 * x + 1) * u * np.pi / 16) * np.cos(
(2 * y + 1) * v * np.pi / 16)
alpha = np.array([1. / np.sqrt(2)] + [1] * 7)
#
self.tensor = nn.Parameter(torch.from_numpy(tensor).float())
self.scale = nn.Parameter(torch.from_numpy(np.outer(alpha, alpha) * 0.25).float() )
def forward(self, image):
image = image - 128
result = self.scale * torch.tensordot(image, self.tensor, dims=2)
result.view(image.shape)
return result
# 5. Quantization
class y_quantize(nn.Module):
""" JPEG Quantization for Y channel
Input:
image(tensor): batch x height x width
rounding(function): rounding function to use
factor(float): Degree of compression
Output:
image(tensor): batch x height x width
"""
def __init__(self, rounding, factor=1):
super(y_quantize, self).__init__()
self.rounding = rounding
self.factor = factor
self.y_table = y_table
def forward(self, image):
image = image.float() / (self.y_table * self.factor)
image = self.rounding(image)
return image
class c_quantize(nn.Module):
""" JPEG Quantization for CrCb channels
Input:
image(tensor): batch x height x width
rounding(function): rounding function to use
factor(float): Degree of compression
Output:
image(tensor): batch x height x width
"""
def __init__(self, rounding, factor=1):
super(c_quantize, self).__init__()
self.rounding = rounding
self.factor = factor
self.c_table = c_table
def forward(self, image):
image = image.float() / (self.c_table * self.factor)
image = self.rounding(image)
return image
class compress_jpeg(nn.Module):
""" Full JPEG compression algortihm
Input:
imgs(tensor): batch x 3 x height x width
rounding(function): rounding function to use
factor(float): Compression factor
Ouput:
compressed(dict(tensor)): batch x h*w/64 x 8 x 8
"""
def __init__(self, rounding=torch.round, factor=1):
super(compress_jpeg, self).__init__()
self.l1 = nn.Sequential(
rgb_to_ycbcr_jpeg(),
chroma_subsampling()
)
self.l2 = nn.Sequential(
block_splitting(),
dct_8x8()
)
self.c_quantize = c_quantize(rounding=rounding, factor=factor)
self.y_quantize = y_quantize(rounding=rounding, factor=factor)
def forward(self, image):
y, cb, cr = self.l1(image*255)
components = {'y': y, 'cb': cb, 'cr': cr}
for k in components.keys():
comp = self.l2(components[k])
if k in ('cb', 'cr'):
comp = self.c_quantize(comp)
else:
comp = self.y_quantize(comp)
components[k] = comp
return components['y'], components['cb'], components['cr']
# -5. Dequantization
class y_dequantize(nn.Module):
""" Dequantize Y channel
Inputs:
image(tensor): batch x height x width
factor(float): compression factor
Outputs:
image(tensor): batch x height x width
"""
def __init__(self, factor=1):
super(y_dequantize, self).__init__()
self.y_table = y_table
self.factor = factor
def forward(self, image):
return image * (self.y_table * self.factor)
class c_dequantize(nn.Module):
""" Dequantize CbCr channel
Inputs:
image(tensor): batch x height x width
factor(float): compression factor
Outputs:
image(tensor): batch x height x width
"""
def __init__(self, factor=1):
super(c_dequantize, self).__init__()
self.factor = factor
self.c_table = c_table
def forward(self, image):
return image * (self.c_table * self.factor)
# -4. Inverse DCT
class idct_8x8(nn.Module):
""" Inverse discrete Cosine Transformation
Input:
dcp(tensor): batch x height x width
Output:
image(tensor): batch x height x width
"""
def __init__(self):
super(idct_8x8, self).__init__()
alpha = np.array([1. / np.sqrt(2)] + [1] * 7)
self.alpha = nn.Parameter(torch.from_numpy(np.outer(alpha, alpha)).float())
tensor = np.zeros((8, 8, 8, 8), dtype=np.float32)
for x, y, u, v in itertools.product(range(8), repeat=4):
tensor[x, y, u, v] = np.cos((2 * u + 1) * x * np.pi / 16) * np.cos(
(2 * v + 1) * y * np.pi / 16)
self.tensor = nn.Parameter(torch.from_numpy(tensor).float())
def forward(self, image):
image = image * self.alpha
result = 0.25 * torch.tensordot(image, self.tensor, dims=2) + 128
result.view(image.shape)
return result
# -3. Block joining
class block_merging(nn.Module):
""" Merge pathces into image
Inputs:
patches(tensor) batch x height*width/64, height x width
height(int)
width(int)
Output:
image(tensor): batch x height x width
"""
def __init__(self):
super(block_merging, self).__init__()
def forward(self, patches, height, width):
k = 8
batch_size = patches.shape[0]
image_reshaped = patches.view(batch_size, height//k, width//k, k, k)
image_transposed = image_reshaped.permute(0, 1, 3, 2, 4)
return image_transposed.contiguous().view(batch_size, height, width)
# -2. Chroma upsampling
class chroma_upsampling(nn.Module):
""" Upsample chroma layers
Input:
y(tensor): y channel image
cb(tensor): cb channel
cr(tensor): cr channel
Ouput:
image(tensor): batch x height x width x 3
"""
def __init__(self):
super(chroma_upsampling, self).__init__()
def forward(self, y, cb, cr):
def repeat(x, k=2):
height, width = x.shape[1:3]
x = x.unsqueeze(-1)
x = x.repeat(1, 1, k, k)
x = x.view(-1, height * k, width * k)
return x
cb = repeat(cb)
cr = repeat(cr)
return torch.cat([y.unsqueeze(3), cb.unsqueeze(3), cr.unsqueeze(3)], dim=3)
# -1: YCbCr -> RGB
class ycbcr_to_rgb_jpeg(nn.Module):
""" Converts YCbCr image to RGB JPEG
Input:
image(tensor): batch x height x width x 3
Outpput:
result(tensor): batch x 3 x height x width
"""
def __init__(self):
super(ycbcr_to_rgb_jpeg, self).__init__()
matrix = np.array(
[[1., 0., 1.402], [1, -0.344136, -0.714136], [1, 1.772, 0]],
dtype=np.float32).T
self.shift = nn.Parameter(torch.tensor([0, -128., -128.]))
self.matrix = nn.Parameter(torch.from_numpy(matrix))
def forward(self, image):
result = torch.tensordot(image + self.shift, self.matrix, dims=1)
result.view(image.shape)
return result.permute(0, 3, 1, 2)
class decompress_jpeg(nn.Module):
""" Full JPEG decompression algortihm
Input:
compressed(dict(tensor)): batch x h*w/64 x 8 x 8
rounding(function): rounding function to use
factor(float): Compression factor
Ouput:
image(tensor): batch x 3 x height x width
"""
def __init__(self, height, width, rounding=torch.round, factor=1):
super(decompress_jpeg, self).__init__()
self.c_dequantize = c_dequantize(factor=factor)
self.y_dequantize = y_dequantize(factor=factor)
self.idct = idct_8x8()
self.merging = block_merging()
self.chroma = chroma_upsampling()
self.colors = ycbcr_to_rgb_jpeg()
self.height, self.width = height, width
def forward(self, y, cb, cr):
components = {'y': y, 'cb': cb, 'cr': cr}
for k in components.keys():
if k in ('cb', 'cr'):
comp = self.c_dequantize(components[k])
height, width = int(self.height/2), int(self.width/2)
else:
comp = self.y_dequantize(components[k])
height, width = self.height, self.width
comp = self.idct(comp)
components[k] = self.merging(comp, height, width)
#
image = self.chroma(components['y'], components['cb'], components['cr'])
image = self.colors(image)
image = torch.min(255*torch.ones_like(image),
torch.max(torch.zeros_like(image), image))
return image/255
def diff_round(x):
""" Differentiable rounding function
Input:
x(tensor)
Output:
x(tensor)
"""
return torch.round(x) + (x - torch.round(x))**3
def round_only_at_0(x):
cond = (torch.abs(x) < 0.5).float()
return cond * (x ** 3) + (1 - cond) * x
def quality_to_factor(quality):
""" Calculate factor corresponding to quality
Input:
quality(float): Quality for jpeg compression
Output:
factor(float): Compression factor
"""
if quality < 50:
quality = 5000. / quality
else:
quality = 200. - quality*2
return quality / 100.
def jpeg_compress_decompress(image,
# downsample_c=True,
rounding=round_only_at_0,
quality=80):
# image_r = image * 255
height, width = image.shape[2:4]
# orig_height, orig_width = height, width
# if height % 16 != 0 or width % 16 != 0:
# # Round up to next multiple of 16
# height = ((height - 1) // 16 + 1) * 16
# width = ((width - 1) // 16 + 1) * 16
# vpad = height - orig_height
# wpad = width - orig_width
# top = vpad // 2
# bottom = vpad - top
# left = wpad // 2
# right = wpad - left
# #image = tf.pad(image, [[0, 0], [top, bottom], [left, right], [0, 0]], 'SYMMETRIC')
# image = torch.pad(image, [[0, 0], [0, vpad], [0, wpad], [0, 0]], 'reflect')
factor = quality_to_factor(quality)
compress = compress_jpeg(rounding=rounding, factor=factor)
decompress = decompress_jpeg(height, width, rounding=rounding, factor=factor)
y, cb, cr = compress(image)
recovered = decompress(y, cb, cr)
return recovered
if __name__ == '__main__':
''' test JPEG compress and decompress'''
# img = Image.open('house.jpg')
# img = np.array(img) / 255.
# img_r = np.transpose(img, [2, 0, 1])
# img_tensor = torch.from_numpy(img_r).unsqueeze(0).float()
# recover = jpeg_compress_decompress(img_tensor)
# recover_arr = recover.detach().squeeze(0).numpy()
# recover_arr = np.transpose(recover_arr, [1, 2, 0])
# plt.subplot(121)
# plt.imshow(img)
# plt.subplot(122)
# plt.imshow(recover_arr)
# plt.show()
''' test blur '''
# blur
img = Image.open('house.jpg')
img = np.array(img) / 255.
img_r = np.transpose(img, [2, 0, 1])
img_tensor = torch.from_numpy(img_r).unsqueeze(0).float()
print(img_tensor.shape)
N_blur=7
f = random_blur_kernel(probs=[.25, .25], N_blur=N_blur, sigrange_gauss=[1., 3.], sigrange_line=[.25, 1.], wmin_line=3)
# print(f.shape)
# print(type(f))
encoded_image = F.conv2d(img_tensor, f, bias=None, padding=int((N_blur-1)/2))
encoded_image = encoded_image.detach().squeeze(0).numpy()
encoded_image = np.transpose(encoded_image, [1, 2, 0])
plt.subplot(121)
plt.imshow(img)
plt.subplot(122)
plt.imshow(encoded_image)
plt.show()