We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
可能是上一层的shape为[1,128,]导致,但是该API没有对输入形状进行检查并合理地抛出异常,另外jittor不支持ConstantPad1d
--------------------------------------------------------------------------- UnboundLocalError Traceback (most recent call last) Cell In[6], line 55 51 y = m(x) 52 return list(y.shape) ---> 55 go() Cell In[6], line 51, in go() 49 x = jittor.randn([1, 3, 224, 224]) 50 m = alexnet() ---> 51 y = m(x) 52 return list(y.shape) File ~/miniconda3/envs/myconda/lib/python3.9/site-packages/jittor/__init__.py:1168, in Module.__call__(self, *args, **kw) 1167 def __call__(self, *args, **kw): -> 1168 return self.execute(*args, **kw) Cell In[6], line 41, in alexnet.execute(self, x) 39 x = self.relu5_mutated(x) 40 print(x.shape) ---> 41 x = self.pool3_mutated(x) 42 return x File ~/miniconda3/envs/myconda/lib/python3.9/site-packages/jittor/__init__.py:1168, in Module.__call__(self, *args, **kw) 1167 def __call__(self, *args, **kw): -> 1168 return self.execute(*args, **kw) File ~/miniconda3/envs/myconda/lib/python3.9/site-packages/jittor/nn.py:1694, in ConstantPad2d.execute(self, x) 1692 for i in range(len(shape)-2): 1693 tar_dims.append(f"i{i}") -> 1694 tar_dims.append(f"i{i+1}-{self.pt}") 1695 tar_dims.append(f"i{i+2}-{self.pl}") 1696 return x.reindex(tar_shape, tar_dims, overflow_value=self.value) UnboundLocalError: local variable 'i' referenced before assignment
import os os.environ["disable_lock"] = "1" import jittor import jittor.nn as nn import jittor.optim as optim import numpy as np import copy class alexnet(nn.Module): def __init__(self): super().__init__() self.conv1_mutated = jittor.nn.Conv2d(in_channels=3, out_channels=64, kernel_size=6, stride=4, padding=2) self.relu1_mutated = jittor.nn.ReLU() self.pool1_mutated = jittor.nn.ZeroPad2d(padding=(1, 5, 7, 1)) self.conv2_mutated = jittor.nn.UpsamplingNearest2d(scale_factor=1.0) self.relu2_mutated = jittor.nn.GELU() self.pool2_mutated = jittor.nn.MaxPool2d(kernel_size=(3, 6), stride=8, ceil_mode=False, return_indices=False, padding=(6, 3)) self.conv3_mutated = jittor.nn.Sigmoid() self.relu3_mutated = jittor.nn.ELU() self.conv4_mutated = jittor.nn.MaxPool2d(kernel_size=(3, 7), return_indices=False, stride=(6, 2)) self.relu4_mutated = jittor.nn.ReLU() self.conv5_mutated = jittor.nn.Flatten() self.relu5_mutated = jittor.nn.Softmax() self.pool3_mutated = jittor.nn.ConstantPad2d(padding=5, value=0.0) def execute(self, x): x = self.conv1_mutated(x) x = self.relu1_mutated(x) x = self.pool1_mutated(x) x = self.conv2_mutated(x) x = self.relu2_mutated(x) x = self.pool2_mutated(x) x = self.conv3_mutated(x) x = self.relu3_mutated(x) x = self.conv4_mutated(x) x = self.relu4_mutated(x) x = self.conv5_mutated(x) x = self.relu5_mutated(x) print(x.shape) x = self.pool3_mutated(x) return x def go(): jittor.flags.use_cuda = 1 x = jittor.randn([1, 3, 224, 224]) m = alexnet() y = m(x) return list(y.shape) go()
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Describe the bug
可能是上一层的shape为[1,128,]导致,但是该API没有对输入形状进行检查并合理地抛出异常,另外jittor不支持ConstantPad1d
Full Log
Minimal Reproduce
The text was updated successfully, but these errors were encountered: