forked from andrewssobral/lrslibrary
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_algorithm.m
99 lines (89 loc) · 2.73 KB
/
run_algorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
%%% Launch algorithms
% results = run_algorithm(method_id, algorithm_id, A, params)
%
% method_id - string
% algorithm_id - string
% A - matrix/tensor
% params - struct (optional)
%
% params.Idx - observed indexes (vector)
% params.Omega - observed entries (binary matrix/tensor)
%
% results - struct
% results.L - low-rank component
% results.S - sparse component
% results.O - hard thresholding
% results.cputime - CPU time;
%
function results = run_algorithm(method_id, algorithm_id, data, params)
if(nargin < 3)
error('method, algorithm and data must be defined');
end
if(nargin < 4)
params = [];
end
lrs_load_conf;
method_id = strtrim(method_id);
algorithm_id = strtrim(algorithm_id);
method_name = get_method_name_by_id(method_id);
algorithm_name = get_algorithm_name_by_id(algorithm_id);
displog(['Running ' method_name ' with ' algorithm_name]);
switch method_id
case 'RPCA'
method_path = lrs_conf.rpca_path;
case 'ST'
method_path = lrs_conf.st_path;
case 'MC'
method_path = lrs_conf.mc_path;
case 'LRR'
method_path = lrs_conf.lrr_path;
case 'TTD'
method_path = lrs_conf.ttd_path;
case 'NMF'
method_path = lrs_conf.nmf_path;
case 'NTF'
method_path = lrs_conf.ntf_path;
case 'TD'
method_path = lrs_conf.td_path;
otherwise
error('Undefined method!');
end
alg_path = fullfile(method_path,algorithm_id);
addpath(genpath(alg_path));
params.A = data; M = data; T = data;
L = zeros(size(data)); % low-rank component
S = zeros(size(data)); % sparse component
results.cputime = 0;
if(~isfield(params,'rows') && ~isfield(params,'cols'))
params.rows = size(data,1);
params.cols = size(data,2);
end
% For matrix/tensor completion
if(~isfield(params,'Idx') && ~isfield(params,'Omega'))
[params.Idx, params.Omega] = subsampling(data, 0.5);
end
if(isfield(params,'Idx') && ~isfield(params,'Omega')) % Build "params.Omega" from "params.Idx"
params.Omega = zeros(size(data));
params.Omega(params.Idx) = 1;
end
if(isfield(params,'Omega')) % Build "params.Idx" from "params.Omega"
% params.Omega = ones(size(A));
% params.Omega = randi([0 1],size(A));
params.Idx = find(params.Omega);
end
Idx = params.Idx; % MIdx = M(Idx);
Omega = params.Omega; % MOmega = M.*Omega;
timerVal = tic;
% warning('off','all');
run_alg;
% warning('on','all');
cputime = toc(timerVal);
rmpath(genpath(alg_path));
results.L = L; % low-rank component
results.S = S; % sparse component
results.O = hard_threshold(S); % apply hard thresholding
results.Omega = params.Omega; % for matrix/tensor completion
results.Idx = params.Idx; % for matrix/tensor completion
results.cputime = cputime;
displog('Decomposition finished');
end