-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
68 lines (55 loc) · 4.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""
Runs the treeVAE model.
"""
import argparse
from pathlib import Path
import distutils
from train.train import run_experiment
from utils.utils import prepare_config
def main():
project_dir = Path(__file__).absolute().parent
print("Project directory:", project_dir)
parser = argparse.ArgumentParser()
# Training parameters
parser.add_argument('--data_name', type=str, help='the dataset')
parser.add_argument('--num_epochs', type=int, help='the number of training epochs')
parser.add_argument('--num_epochs_finetuning', type=int, help='the number of finetuning epochs')
parser.add_argument('--intermediate_fulltrain', type=lambda x: bool(distutils.util.strtobool(x)), help='whether to finetune the full model during growing')
parser.add_argument('--num_epochs_intermediate_fulltrain', type=int, help='the number of finetuning epochs during training')
parser.add_argument('--num_epochs_smalltree', type=int, help='the number of sub-tree training epochs')
parser.add_argument('--num_clusters_data', type=int, help='the number of clusters in the data')
parser.add_argument('--num_clusters_tree', type=int, help='the max number of leaves of the tree')
parser.add_argument('--spectral_norm', type=lambda x: bool(distutils.util.strtobool(x)), help='whether to use spectral normalization')
# KL annealing parameters
parser.add_argument('--kl_start', type=float, nargs='?', const=0., help='initial KL divergence from where annealing starts')
parser.add_argument('--decay_kl', type=float, help='KL divergence annealing')
# Model parameters
parser.add_argument('--latent_channels', type=str, help='specifies the latent channels of the tree')
parser.add_argument('--bottom_up_channels', type=str, help='specifies how many channels should the bottom-up model have')
parser.add_argument('--representation_dim', type=int, help='the dimension of the latent representation')
parser.add_argument('--dropout_router', type=float, help='dropout rate for the router')
parser.add_argument('--res_connections', type=lambda x: bool(distutils.util.strtobool(x)), help='whether to use residual connections in transformations and bottom-up model layers')
parser.add_argument('--grow', type=lambda x: bool(distutils.util.strtobool(x)), help='whether to grow the tree')
parser.add_argument('--act_function', type=str, help='activation function')
parser.add_argument('--dim_mod_conv', type=lambda x: bool(distutils.util.strtobool(x)), help='whether to change the dimensionality via convolutional layers')
# Contrastive learning parameters
parser.add_argument('--augment', type=lambda x:bool(distutils.util.strtobool(x)), help='augment images or not')
parser.add_argument('--augmentation_method', type=str, help='none vs simple augmentation vs contrastive approaches')
parser.add_argument('--aug_decisions_weight', type=float, help='weight of similarity regularizer for augmented images')
# Evaluation parameters
parser.add_argument('--compute_ll', type=lambda x: bool(distutils.util.strtobool(x)), help='whether to compute the log-likelihood')
# Other parameters
parser.add_argument('--save_model', type=lambda x: bool(distutils.util.strtobool(x)), help='specifies if the model should be saved')
parser.add_argument('--eager_mode', type=lambda x: bool(distutils.util.strtobool(x)), help='specifies if the model should be run in graph or eager mode')
parser.add_argument('--num_workers', type=int, help='number of workers in dataloader')
parser.add_argument('--seed', type=int, help='random number generator seed')
parser.add_argument('--wandb_logging', type=str, help='online, disabled, offline enables logging in wandb')
# Specify config name
parser.add_argument('--config_name', default='cubicc', type=str,
choices=['mnist', 'fmnist', 'news20', 'omniglot', 'cifar10', 'cifar100', 'celeba', 'cubicc'],
help='the override file name for config.yml')
args = parser.parse_args()
configs = prepare_config(args, project_dir)
run_experiment(configs)
if __name__ == "__main__":
main()