-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy path__init__.py
459 lines (380 loc) · 19 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
"""Multiway association between astrometric catalogues"""
from __future__ import print_function, division
import numpy
from numpy import log10, pi
import pandas
from collections import OrderedDict
from .logger import NullOutputLogger, NormalLogger
from . import fastskymatch as match
from . import bayesdistance as bayesdist
from . import magnitudeweights as magnitudeweights
__author__ = """Johannes Buchner"""
__email__ = 'johannes.buchner.acad@gmx.com'
__version__ = '4.6.0'
class UndersampledException(Exception):
pass
class EmptyResultException(Exception):
pass
def nway_match(match_tables, match_radius, prior_completeness,
mag_include_radius=None, mag_exclude_radius=None, magauto_post_single_minvalue=0.9,
prob_ratio_secondary = 0.5,
min_prob=0., consider_unrelated_associations=True,
store_mag_hists=True,
logger=NormalLogger()):
"""
match_tables: list of catalogues, each a dict with entries:
- name (short catalog name, no spaces, used in output columns)
- ra (RA in degrees)
- dec (dec in degrees)
- error (positional error in arcsec)
- area (sky area covered by the catalogue in square degrees)
- mags (list of additional columns to consider as priors)
- magnames (short name for each entry in mags, used in output columns)
- maghists (list of prior information for each entry in mags)
use None to automatically build a histogram of target/non-target sources.
Otherwise, supply the histogram manually: bins_lo, bins_hi, hist_sel, hist_all.
match_radius: maximum radius in arcsec to consider.
More distant counterparts are cut off.
Set to a very large value, e.g. 5 times the largest positional error.
Setting to larger values does not change the result, but
setting to smaller values improves performance.
prior_completeness: expected fraction of sources in the primary catalogue
that are expected to have a counterpart (e.g., 90%).
If an array is passed, completeness for each catalog. First
entry has to be 1.
mag_include_radius:
search radius for building the magnitude histogram of target sources. If None (default), the Bayesian posterior is used
mag_exclude_radius:
exclusion radius for building the magnitude histogram of field sources. If None (default), mag_include_radius is used
magauto_post_single_minvalue:
minimum posterior probability (default: 0.9) for the magnitude histogram of secure target sources. Used in the Bayesian procedure.
prob_ratio_secondary: for each primary catalogue entry, the most probable associations is marked with match_flag=1. Comparably good solutions receive match_flag=2 (all others are match_flag=0). The prob_ratio_secondary parameter controls the lowest probability ratio p(secondary)/p(primary) still considered comparable.
min_prob: Minimum probability for truncating the output table.
default: 0 (no truncation)
consider_unrelated_associations: Correction for missing sources in
partial assocations. Keep to True.
store_mag_hists: Write constructed mag hists to file (filename based on table name and mags).
logger: NormalLogger for stderr output and progress bars, NullOutputLogger if silent
"""
if mag_exclude_radius is None:
mag_exclude_radius = mag_include_radius
if mag_include_radius is not None:
if mag_include_radius >= match_radius:
logger.warn('WARNING: magnitude radius is very large (>= matching radius). Consider using a smaller value.')
ncats = len(match_tables)
table, resultstable, separations, errors = _create_match_table(match_tables, match_radius, logger=logger)
if not len(table) > 0:
raise EmptyResultException('No matches.')
source_densities, source_densities_plus = _compute_source_densities(match_tables, logger=logger)
# first pass: find secure matches and secure non-matches
prior, log_bf = _compute_single_log_bf(match_tables, source_densities, source_densities_plus, table, separations, errors, prior_completeness, logger=logger)
table = table.assign(
dist_bayesfactor_uncorrected=log_bf,
dist_bayesfactor=log_bf
)
if consider_unrelated_associations:
_correct_unrelated_associations(table, separations, errors, ncats, source_densities, source_densities_plus, logger=logger)
log_bf = table['dist_bayesfactor']
# add the additional columns
post = bayesdist.posterior(prior, log_bf)
table = table.assign(dist_post=post)
# find magnitude biasing functions
table, total = _apply_magnitude_biasing(match_tables, table, mag_include_radius, mag_exclude_radius, magauto_post_single_minvalue, store_mag_hists, logger=logger)
table = _compute_final_probabilities(match_tables, table, prob_ratio_secondary, prior, total, logger=logger)
table = _truncate_table(table, min_prob, logger=logger)
return table
def _create_match_table(match_tables, match_radius, logger):
# first match input catalogues, compute possible combinations in match_radius
ratables = [(t['ra'], t['dec']) for t in match_tables]
table_names = [t['name'] for t in match_tables]
resultstable = match.crossproduct(ratables, match_radius / 60. / 60, logger=logger)
#results = resultstable.view(dtype=[(t['name'], resultstable.dtype) for t in match_tables]).reshape((-1,))
nresults = len(resultstable)
keys = []
columns = []
for i, t in enumerate(match_tables):
keys.append(t['name'])
columns.append(resultstable[:,i])
# matrix of separations
separations = []
errors = []
invalid_separations = numpy.ones(nresults) * numpy.nan
logger.log(' adding angular separation columns')
max_separation = numpy.zeros(nresults)
for i in range(len(match_tables)):
a_ra = ratables[i][0][resultstable[:,i]]
a_dec = ratables[i][1][resultstable[:,i]]
errors.append(match_tables[i]['error'][resultstable[:,i]])
row = []
for j in range(len(match_tables)):
if i < j:
b_ra = ratables[j][0][resultstable[:,j]]
b_dec = ratables[j][1][resultstable[:,j]]
col = match.dist((a_ra, a_dec), (b_ra, b_dec))
assert not numpy.isnan(col).any(), ['%d distances are nan' % numpy.isnan(col).sum(),
a_ra[numpy.isnan(col)], a_dec[numpy.isnan(col)],
b_ra[numpy.isnan(col)], b_dec[numpy.isnan(col)]]
assert not (a_ra == b_ra).all()
# store distance in arcsec
col[resultstable[:,i] == -1] = numpy.nan
col[resultstable[:,j] == -1] = numpy.nan
col[a_ra == -99] = numpy.nan
col[b_ra == -99] = numpy.nan
col_arcsec = col * 60 * 60
keys.append("Separation_%s_%s" % (table_names[i], table_names[j]))
columns.append(col_arcsec)
max_separation = numpy.nanmax([col_arcsec, max_separation], axis=0)
row.append(col_arcsec)
else:
# mark the upper right triangle of the matrix as invalid data
row.append(invalid_separations)
separations.append(row)
del row
keys.append('Separation_max')
columns.append(max_separation)
keys.append('ncat')
columns.append((resultstable > -1).sum(axis=1))
# now truncate all columns:
mask = max_separation < match_radius
columns = [c[mask] for c in columns]
errors = [e[mask] for e in errors]
separations = [[cell[mask] for cell in row] for row in separations]
#results = results[mask]
resultstable = resultstable[mask,:]
nresults = len(resultstable)
logger.log('matching: %6d matches after filtering by search radius' % mask.sum())
# now we have columns, which contains the distance information.
assert len(columns) == len(keys), (len(columns), len(keys), keys)
table = pandas.DataFrame(OrderedDict(zip(keys, columns)))
assert len(table) == nresults, (len(table), nresults, mask.sum())
return table, resultstable, separations, errors
def _compute_source_densities(match_tables, logger):
source_densities = []
source_densities_plus = []
for i, match_table in enumerate(match_tables):
n = len(match_table['ra'])
area = match_table['area'] * 1.0 # in square degrees
area_total = (4 * pi * (180 / pi)**2)
density = n / area * area_total
logger.log('%s "%s" (%d), density gives %.2e objects on entire sky' % ('Primary catalogue' if i == 0 else 'Catalogue', match_table['name'], n, density))
# this takes into account that the source may be absent
density_plus = (n + 1) / area * area_total
source_densities.append(density)
source_densities_plus.append(density_plus)
# source can not be absent in primary catalogue
source_densities_plus[0] = source_densities[0]
source_densities_plus = numpy.array(source_densities_plus)
source_densities = numpy.array(source_densities)
return source_densities, source_densities_plus
def _compute_single_log_bf(match_tables, source_densities, source_densities_plus, table, separations, errors, prior_completeness, logger):
logger.log('Computing distance-based probabilities ...')
ncats = len(match_tables)
if numpy.shape(prior_completeness) == ():
prior_completeness = numpy.array([1.0] + [float(prior_completeness)**(1./(ncats-1)) for i in range(1, ncats)])
if len(prior_completeness) != ncats:
raise Exception('Prior completeness needs one value per catalog. Received "%s".' % prior_completeness)
assert prior_completeness[0] == 1.0
log_bf = numpy.zeros(len(table)) * numpy.nan
prior = numpy.zeros(len(table)) * numpy.nan
# handle all cases (also those with missing counterparts in some catalogues)
for case in range(2**(ncats-1)):
table_mask = numpy.array([True] + [(case // 2**(ti)) % 2 == 0 for ti in range(len(match_tables)-1)])
# select those cases
mask = True
for i in range(1, len(match_tables)):
if table_mask[i]: # require not nan
mask = numpy.logical_and(mask, ~numpy.isnan(separations[0][i]))
else:
mask = numpy.logical_and(mask, numpy.isnan(separations[0][i]))
# select errors
errors_selected = [e[mask] for e, m in zip(errors, table_mask) if m]
separations_selected = [[cell[mask] for cell, m in zip(row, table_mask) if m]
for row, m2 in zip(separations, table_mask) if m2]
# here we should call the elliptical error variant if errors is a 2d array
r = bayesdist.log_bf(separations_selected, errors_selected)
assert r.shape == separations_selected[0][0].shape, (r.shape, separations_selected[0][0].shape)
assert r.shape == errors_selected[0].shape, (r.shape, errors_selected[0].shape)
assert r.shape == mask.sum(), (r.shape, mask.sum(), mask.shape)
log_bf[mask] = r
prior[mask] = source_densities[0] * numpy.product(prior_completeness[table_mask]) / numpy.product(source_densities_plus[table_mask])
assert numpy.isfinite(prior[mask]).all(), (source_densities, prior_completeness[table_mask], numpy.product(source_densities_plus[table_mask]))
assert numpy.isfinite(prior).all(), (prior, log_bf)
assert numpy.isfinite(log_bf).all(), (prior, log_bf)
return prior, log_bf
def _correct_unrelated_associations(table, separations, errors, ncats, source_densities, source_densities_plus, logger):
logger.log(' correcting for unrelated associations ...')
# correct for unrelated associations
# identify those in need of correction
# two unconsidered catalogues are needed for an unrelated association
primary_id = table[table.columns[0]]
#candidates = numpy.unique(primary_id[(ncat <= ncats - 2).values])
pbar = logger.progress()
for primary_id_key, group in pbar(table.groupby(primary_id, sort=False)):
ncat_here = group['ncat']
# list which ones we are missing
best_logpost = 0
# go through more complex associations
for j in group[ncat_here > 2].index.values:
missing_cats = [k for k, sep in enumerate(separations[0]) if numpy.isnan(sep[j])]
# check if this association has sufficient overlap with the one we are looking for
# it must contain at least two of the catalogues we are missing
augmented_cats = []
for k in missing_cats:
if not numpy.isnan(separations[0][k][j]):
augmented_cats.append(k)
n_augmented_cats = len(augmented_cats)
if n_augmented_cats >= 2:
# ok, this is helpful.
# identify the separations and errors
separations_selected = [[[separations[k][k2][j]] for k2 in augmented_cats] for k in augmented_cats]
errors_selected = [[errors[k][j]] for k in augmented_cats]
# identify the prior
prior_j = source_densities[augmented_cats[0]] / numpy.product(source_densities_plus[augmented_cats])
# compute a log_bf
log_bf_j = bayesdist.log_bf(numpy.array(separations_selected), numpy.array(errors_selected))
logpost_j = bayesdist.unnormalised_log_posterior(prior_j, log_bf_j, n_augmented_cats)
if logpost_j > best_logpost:
#print('post:', logpost_j, log_bf_j, prior_j)
best_logpost = logpost_j
# ok, we have our correction factor, best_logpost
# lets multiply it onto log_bf
if best_logpost > 0:
group['dist_bayesfactor'] += best_logpost
def _apply_magnitude_biasing(match_tables, table, mag_include_radius, mag_exclude_radius, magauto_post_single_minvalue, store_mag_hists, logger):
biases = {}
for i, t in enumerate(match_tables):
table_name = t['name']
for magvals, maghist, magname in zip(t['mags'], t['maghists'], t['magnames']):
col_name = magname
col = "%s_%s" % (table_name, col_name)
mag = "%s:%s" % (table_name, col_name)
logger.log('Incorporating bias "%s" ...' % mag)
res = table[table.columns[i]].values
res_defined = res != -1
# get magnitudes of all
# mark -99 as undefined
mag_all = magvals
mag_all[mag_all == -99] = numpy.nan
# get magnitudes of selected
mask_all = numpy.isfinite(mag_all)
if maghist is None:
if mag_include_radius is not None:
selection = table['Separation_max'].values < mag_include_radius
selection_possible = table['Separation_max'].values < mag_exclude_radius
selection_weights = numpy.ones(len(selection))
else:
selection = (table['dist_post'] > magauto_post_single_minvalue).values
selection_weights = table['dist_post'].values
selection_possible = (table['dist_post'] > 0.01).values
# ignore cases where counterpart is missing
assert res_defined.shape == selection.shape, (res_defined.shape, selection.shape)
selection = numpy.logical_and(selection, res_defined)
selection_weights = selection_weights[res_defined]
selection_possible = numpy.logical_and(selection_possible, res_defined)
#print ' selection', selection.sum(), selection_possible.sum(), (-selection_possible).sum()
#rows = results[table_name][selection].tolist()
assert selection.shape == res.shape, (selection.shape, res.shape)
rows, unique_indices = numpy.unique(res[selection], return_index=True)
rows_weights = selection_weights[unique_indices]
assert len(rows) > 0, 'No magnitude values within radius for "%s".' % mag
mag_sel = magvals[rows]
mag_sel_weights = rows_weights
# remove vaguely possible options from alternative histogram
assert selection_possible.shape == res.shape, (selection_possible.shape, res.shape)
#print(res, selection, selection_possible)
rows_possible = numpy.unique(res[selection_possible])
mask_others = mask_all.copy()
mask_others[rows_possible] = False
# all options in the total (field+target sources) histogram
mask_sel = ~numpy.logical_or(numpy.isnan(mag_sel), numpy.isinf(mag_sel))
#print ' non-nans: ', mask_sel.sum(), mask_others.sum()
logger.log('magnitude histogram of column "%s": %d secure matches, %d insecure matches and %d secure non-matches of %d total entries (%d valid)' % (col, mask_sel.sum(), len(rows_possible), mask_others.sum(), len(mag_all), mask_all.sum()))
# make function fitting to ratio shape
bins, hist_sel, hist_all = magnitudeweights.adaptive_histograms(mag_all[mask_others], mag_sel[mask_sel], weights=mag_sel_weights[mask_sel])
if store_mag_hists:
logger.log('magnitude histogram stored to "%s".' % (mag.replace(':', '_') + '_fit.txt'))
with open(mag.replace(':', '_') + '_fit.txt', 'wb') as f:
f.write(b'# lo hi selected others\n')
numpy.savetxt(f,
numpy.transpose([bins[:-1], bins[1:], hist_sel, hist_all]),
fmt = ["%10.5f"]*4)
if mask_sel.sum() < 100:
raise UndersampledException('ERROR: too few secure matches (%d) to make a good histogram. If you are sure you want to use this poorly sampled histogram, replace "auto" with the filename. You can also decrease the mag-auto-minprob parameter.' % mask_sel.sum())
else:
logger.log('magnitude histogramming: using user-supplied histogram for "%s"' % (col))
bins_lo, bins_hi, hist_sel, hist_all = maghist #numpy.loadtxt(magfile).transpose()
bins = numpy.array(list(bins_lo) + [bins_hi[-1]])
func = magnitudeweights.fitfunc_histogram(bins, hist_sel, hist_all)
if store_mag_hists:
magnitudeweights.plot_fit(bins, hist_sel, hist_all, func, mag)
magcol = magvals[res]
magcol[~numpy.logical_and(res_defined, numpy.isfinite(magcol))] = -99
#magcol[~res_defined] = -99
weights = log10(func(magcol))
# undefined magnitudes do not contribute
weights[numpy.isnan(weights)] = 0
biases[col] = weights
# add the bias columns
table = table.assign(**{'bias_%s' % col:10**weights for col, weights in biases.items()})
log_bf = table['dist_bayesfactor'].values
total = log_bf + sum(biases.values())
return table, total
def _compute_final_probabilities(match_tables, table, prob_ratio_secondary, prior, total, logger):
logger.log('')
logger.log('Computing final probabilities ...')
# add the posterior column
post = bayesdist.posterior(prior, total)
table = table.assign(p_single=post)
# compute weights for group posteriors
# 4pi comes from Eq.
ncat = table['ncat'].values
log_post_weight = bayesdist.unnormalised_log_posterior(prior, total, ncat)
table = table.assign(log_post_weight=log_post_weight)
# flagging of solutions. Go through groups by primary id (IDs in first catalogue)
table = table.assign(
match_flag = numpy.zeros(len(table), dtype=int),
prob_has_match = numpy.zeros(len(table)),
prob_this_match = numpy.zeros(len(table)),
)
logger.log(' grouping by primary catalogue ID and flagging ...')
def compute_group_statistics(group):
# group
# compute no-match probability
values = group['log_post_weight'].values
#values = grpvalues.values
offset = values.max()
bfsum = log10((10**(values - offset)).sum()) + offset
if len(values) > 1:
offset = values[1:].max()
bfsum1 = log10((10**(values[1:] - offset)).sum()) + offset
else:
bfsum1 = 0
assert group['ncat'].values[0] == 1, group['ncat']
#print(group['ncat'].values[0])
# for p_any, find the one without counterparts
p_none = values[0]
p_any = 1 - 10**(p_none - bfsum)
# this avoids overflows in the no-counterpart solution,
# which we want to set to 0
values[0] = bfsum1
p_i = 10**(values - bfsum1)
p_i[0] = 0
best_val = p_i.max()
# flag best & second best
# ignore very poor solutions
match_flag = numpy.where(best_val == p_i, 1,
numpy.where(p_i > prob_ratio_secondary * best_val, 2, 0))
group['prob_has_match'] = p_any
group['prob_this_match'] = p_i
group['match_flag'] = match_flag
return group
table = table.groupby(table.columns[0], sort=False).apply(compute_group_statistics)
del table['log_post_weight']
return table
def _truncate_table(table, min_prob, logger):
# cut away poor posteriors if requested
if min_prob > 0:
mask = ~(table['prob_this_match'] < min_prob)
logger.log(' cutting away %d (below p_i minimum)' % (len(mask) - mask.sum()))
table = table[mask]
return table