forked from yassouali/CCT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
129 lines (108 loc) · 4.33 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import argparse
import scipy, math
from scipy import ndimage
import cv2
import numpy as np
import sys
import json
import models
import dataloaders
from utils.helpers import colorize_mask
from utils.pallete import get_voc_pallete
from utils import metrics
import torch
import torch.nn as nn
from torchvision import transforms
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
import os
from tqdm import tqdm
from math import ceil
from PIL import Image
from pathlib import Path
class testDataset(Dataset):
def __init__(self, images):
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
images_path = Path(images)
self.filelist = list(images_path.glob("*.jpg"))
self.to_tensor = transforms.ToTensor()
self.normalize = transforms.Normalize(mean, std)
def __len__(self):
return len(self.filelist)
def __getitem__(self, index):
image_path = self.filelist[index]
image_id = str(image_path).split("/")[-1].split(".")[0]
image = Image.open(image_path)
image = self.normalize(self.to_tensor(image))
return image, image_id
def multi_scale_predict(model, image, scales, num_classes, flip=True):
H, W = (image.size(2), image.size(3))
upsize = (ceil(H / 8) * 8, ceil(W / 8) * 8)
upsample = nn.Upsample(size=upsize, mode='bilinear', align_corners=True)
pad_h, pad_w = upsize[0] - H, upsize[1] - W
image = F.pad(image, pad=(0, pad_w, 0, pad_h), mode='reflect')
total_predictions = np.zeros((num_classes, image.shape[2], image.shape[3]))
for scale in scales:
scaled_img = F.interpolate(image, scale_factor=scale, mode='bilinear', align_corners=False)
scaled_prediction = upsample(model(scaled_img))
if flip:
fliped_img = scaled_img.flip(-1)
fliped_predictions = upsample(model(fliped_img))
scaled_prediction = 0.5 * (fliped_predictions.flip(-1) + scaled_prediction)
total_predictions += scaled_prediction.data.cpu().numpy().squeeze(0)
total_predictions /= len(scales)
return total_predictions[:, :H, :W]
def main():
args = parse_arguments()
# CONFIG
assert args.config
config = json.load(open(args.config))
scales = [0.5, 0.75, 1.0, 1.25, 1.5]
# DATA
testdataset = testDataset(args.images)
loader = DataLoader(testdataset, batch_size=1, shuffle=False, num_workers=1)
num_classes = 21
palette = get_voc_pallete(num_classes)
# MODEL
config['model']['supervised'] = True; config['model']['semi'] = False
model = models.CCT(num_classes=num_classes,
conf=config['model'], testing=True)
checkpoint = torch.load(args.model)
model = torch.nn.DataParallel(model)
try:
model.load_state_dict(checkpoint['state_dict'], strict=True)
except Exception as e:
print(f'Some modules are missing: {e}')
model.load_state_dict(checkpoint['state_dict'], strict=False)
model.eval()
model.cuda()
if args.save and not os.path.exists('outputs'):
os.makedirs('outputs')
# LOOP OVER THE DATA
tbar = tqdm(loader, ncols=100)
total_inter, total_union, total_correct, total_label = 0, 0, 0, 0
labels, predictions = [], []
for index, data in enumerate(tbar):
image, image_id = data
image = image.cuda()
# PREDICT
with torch.no_grad():
output = multi_scale_predict(model, image, scales, num_classes)
prediction = np.asarray(np.argmax(output, axis=0), dtype=np.uint8)
# SAVE RESULTS
prediction_im = colorize_mask(prediction, palette)
prediction_im.save('outputs/'+image_id[0]+'.png')
def parse_arguments():
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--config', default='configs/config.json',type=str,
help='Path to the config file')
parser.add_argument( '--model', default=None, type=str,
help='Path to the trained .pth model')
parser.add_argument( '--save', action='store_true', help='Save images')
parser.add_argument('--images', default="/home/yassine/Datasets/vision/PascalVoc/VOC/VOCdevkit/VOC2012/test_images", type=str,
help='Test images for Pascal VOC')
args = parser.parse_args()
return args
if __name__ == '__main__':
main()