forked from Kaleb47/Haskell-Plutus-journal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
HaskellCheatSheet.hs
1244 lines (915 loc) · 34.7 KB
/
HaskellCheatSheet.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
ll-tut.hsHaskell
-- Haskell is a functional programming language
-- Everything is immutable so once a value is set it is set forever
-- Functions can be passed as a parameter to other functions
-- Recursion is used often
-- Haskell has no for, while, or technically variables, but it does have
-- constants
-- Haskell is lazy in that it doesn't execute more then is needed and instead
-- just checks for errors
-- Best Free Haskell Book
-- http://learnyouahaskell.com/chapters
-- Type ghci to open it up in your terminal
-- Load script with :l haskelltut
-- :quit exits the GHCi
-- Import a module
import Data.List
import System.IO
{-
Beginning of multiline comment
-}
-- ---------- DATA TYPES ----------
-- Haskell uses type inference meaning it decides on the data type based on the -- value stored in it
-- Haskell is statically typed and can't switch type after compiling
-- Values can't be changed (Immutable)
-- You can use :t in the terminal to get the data type (:t value)
-- Int : Whole number -2^63 - 2^63
-- :: Int defines that maxInt is an Int
maxInt = maxBound :: Int
minInt = minBound :: Int
-- Integer : Unbounded whole number
-- Float : Single precision floating point number
-- Double : Double precision floating point number (11 pts precision)
bigFloat = 3.99999999999 + 0.00000000005
-- Bool : True or False
-- Char : Single unicode character denoted with single quotes
-- Tuple : Can store a list made up of many data types
-- You declare the permanent value of a variable like this
always5 :: Int
always5 = 5
-- ---------- MATH ----------
-- Something crazy to start
sumOfVals = sum [1..1000]
addEx = 5 + 4
subEx = 5 - 4
multEx = 5 * 4
divEx = 5 / 4
-- mod is a prefix operator
modEx = mod 5 4
-- With back ticks we can use it as an infix operator
modEx2 = 5 `mod` 4
-- Negative numbers must be surrounded with parentheses
negNumEx = 5 + (-4)
-- If you define an Int you must use fromIntegral to use it with sqrt
-- :t sqrt shows that it returns a floating point number
num9 = 9 ::Int
sqrtOf9 = sqrt (fromIntegral num9)
-- Built in math functions
piVal = pi
ePow9 = exp 9
logOf9 = log 9
squared9 = 9 ** 2
truncateVal = truncate 9.999
roundVal = round 9.999
ceilingVal = ceiling 9.999
floorVal = floor 9.999
-- Also sin, cos, tan, asin, atan, acos, sinh, tanh, cosh, asinh, atanh, acosh
trueAndFalse = True && False
trueOrFalse = True || False
notTrue = not(True)
-- Remember you use :t in the terminal to get the data type (:t value)
-- You can also see how functions use data types with :t
-- :t (+) = Num a => a -> a -> a
-- Type a is in the type class num, we receive 2 of them and return 1
-- :t truncate = (RealFrac a, Integral b) => a -> b
-- ---------- LISTS ----------
-- Lists are singly linked and you can only add to the front of it
-- Lists store many elements of the same type
primeNumbers = [3,5,7,11]
-- Concatenate lists (Can be slow if your using a large list)
morePrimes = primeNumbers ++ [13,17,19,23,29]
-- You can use the cons operator to construct a list
favNums = 2 : 7 : 21 : 66 : []
-- You can make a list of lists
multList = [[3,5,7],[11,13,17]]
-- Quick way to add 1 value to the front of a list
morePrimes2 = 2 : morePrimes
-- Get number of elements in the list
lenPrime = length morePrimes2
-- Reverse the list
revPrime = reverse morePrimes2
-- return True if list is empty
isListEmpty = null morePrimes2
-- Get the number in index 1
secondPrime = morePrimes2 !! 1
-- Gets the 1st value in a list
firstPrime = head morePrimes2
-- Gets the last value
lastPrime = last morePrimes2
-- Gets everything but the first value
primeTail = tail morePrimes2
-- Gets everything but the last value
primeInit = init morePrimes2
-- Get specified number of elements from the front of a list
first3Primes = take 3 morePrimes2
-- Return values left after removing specified values
removedPrimes = drop 3 morePrimes2
-- Check if value is in list
is7InList = 7 `elem` morePrimes2
-- Get max value
maxPrime = maximum morePrimes2
-- Get minimum value
minPrime = minimum morePrimes2
-- Sum values in list
sumPrimes = sum morePrimes2
-- Get product of values in list (Value all can evenly divide by)
newList = [2,3,5]
prodPrimes = product newList
-- Create list from 0 to 10
zeroToTen = [0..10]
-- Create list of evens by defining the step between the first 2 values
evenList = [2,4..20]
-- You can use letters as well
letterList = ['A','C'..'Z']
-- You can generate an infinite list and Haskell will only generate what you
-- need
infinPow10 = [10,20..]
-- repeat repeats a value a defined number of times
many2s = take 10 (repeat 2)
-- replicate generates a value a specified number of times
many3s = replicate 10 3
-- cycle replicates the values in a list indefinitely
cycleList = take 10 (cycle [1,2,3,4,5])
-- You could perform operations on all values in a list
-- Cycle through the list storing each value in x which is multiplied by 2 and
-- then stored in a new list
listTimes2 = [x * 2 | x <- [1..10]]
-- We can filter the results with conditions
listTimes3 = [x * 3 | x <- [1..20], x*3 <= 50]
-- Return all values that are divisible by 13 and 9
divisBy9N13 = [x | x <- [1..500], x `mod` 13 == 0, x `mod` 9 == 0]
-- Sort a list
sortedList = sort [9,1,8,3,4,7,6]
-- zipwith can combine lists using a function
sumOfLists = zipWith (+) [1,2,3,4,5] [6,7,8,9,10]
-- Filter returns a list of items that match a condition
listBiggerThen5 = filter (>5) sumOfLists
-- takeWhile returns list items until the condition is false
evensUpTo20 = takeWhile (<=20) [2,4..]
-- foldl applies the operation on each item of a list
-- foldr applies these operations from the right
multOfList = foldl (*) 1 [2,3,4,5]
-- ---------- LIST COMPREHENSION ----------
-- We can generate a list from 1 to 10 to the power of 3
pow3List = [3^n | n <- [1..10]]
-- We can filter the results to only show values divisible by 9
pow3ListDiv9 = [3^n | n <- [1..10], 3^n `mod` 9 == 0]
-- Generate a multiplication table by multiplying x * y where y has the values
-- 1 through 10 and where x does as well
multTable = [[x * y | y <- [1..10]] | x <- [1..10]]
-- ---------- TUPLES ----------
-- Stores list of multiple data types, but has a fixed size
randTuple = (1,"Random tuple")
-- A tuple pair stores 2 values
bobSmith = ("Bob Smith",52)
-- Get the first value
bobsName = fst bobSmith
-- Get the second value
bobsAge = snd bobSmith
-- zip can combine values into tuple pairs
names = ["Bob","Mary","Tom"]
addresses = ["123 Main","234 North","567 South"]
namesNAddress = zip names addresses
-- ---------- FUNCTIONS ----------
-- ghc --make haskelltut compiles your program and executes the main function
-- Functions must start with lowercase letters
-- We can define functions and values in the GHCi with let
-- let num7 = 7
-- let getTriple x = x * 3
-- getTriple num7 = 21
-- main is a function that can be called in the terminal with main
main = do
-- Prints the string with a new line
putStrLn "What's your name: "
-- Gets user input and stores it in name
-- <- Pulls the name entered from an IO action
name <- getLine
putStrLn ("Hello " ++ name)
-- Create function addMe
-- x is a parameter and the operation follows the equals sign
-- The data type passed in will work if it makes sense
-- Every function must return something
-- A function name can't begin with a capital letter
-- A function that doesn't receive parameters is called a definition or name
-- You can define a type declaration for functions
-- funcName :: param1 -> param2 -> returnType
addMe :: Int -> Int -> Int
-- funcName param1 param2 = operations (Returned Value)
-- Execute with : addMe 4 5
addMe x y = x + y
-- Without type declaration you can add floats as well
sumMe x y = x + y
-- You can also add tuples : addTuples (1,2) (3,4) = (4,6)
addTuples :: (Int, Int) -> (Int, Int) -> (Int, Int)
addTuples (x, y) (x2, y2) = (x + x2, y + y2)
-- You can perform different actions based on values
whatAge :: Int -> String
whatAge 16 = "You can drive"
whatAge 18 = "You can vote"
whatAge 21 = "You're an adult"
-- The default
whatAge x = "Nothing Important"
-- Define that we expect an Int in and out
factorial :: Int -> Int
-- If 0 return a 1 (Recursive Function)
factorial 0 = 1
factorial n = n * factorial (n - 1)
-- 3 * factorial (2) : 6
-- 2 * factorial (1) : 2
-- 1 * factorial (0) : 1
-- You could also use product to calculate factorial
productFactorial n = product [1..n]
-- We can use guards that provide different actions based on conditions
isOdd :: Int -> Bool
isOdd n
-- if the modulus using 2 equals 0 return False
| n `mod` 2 == 0 = False
-- Else return True
| otherwise = True
-- This could be shortened to
isEven n = n `mod` 2 == 0
-- Use guards to define the school to output
whatGrade :: Int -> String
whatGrade age
| (age >= 5) && (age <= 6) = "Kindergarten"
| (age > 6) && (age <= 10) = "Elementary School"
| (age > 10) && (age <= 14) = "Middle School"
| (age > 14) && (age <= 18) = "High School"
| otherwise = "Go to college"
-- The where clause keeps us from having to repeat a calculation
batAvgRating :: Double -> Double -> String
batAvgRating hits atBats
| avg <= 0.200 = "Terrible Batting Average"
| avg <= 0.250 = "Average Player"
| avg <= 0.280 = "Your doing pretty good"
| otherwise = "You're a Superstar"
where avg = hits / atBats
-- You can access list items by separating letters with : or get everything but
-- the first item with xs
getListItems :: [Int] -> String
getListItems [] = "Your list is empty"
getListItems (x:[]) = "Your list contains " ++ show x
getListItems (x:y:[]) = "Your list contains " ++ show x ++ " and " ++ show y
getListItems (x:xs) = "The first item is " ++ show x ++ " and the rest are "
++ show xs
-- We can also get values with an As pattern
getFirstItem :: String -> String
getFirstItem [] = "Empty String"
getFirstItem all@(x:xs) = "The first letter in " ++ all ++ " is "
++ [x]
-- ---------- HIGHER ORDER FUNCTIONS ----------
-- Passing of functions as if they are variables
times4 :: Int -> Int
times4 x = x * 4
-- map applies a function to every item in the list
listTimes4 = map times4 [1,2,3,4,5]
-- Let's make map
multBy4 :: [Int] -> [Int]
multBy4 [] = []
-- Takes the 1st value off the list x, multiplies it by 4 and stores it in the
-- new list
-- xs is then passed back into multBy4 until there is nothing left of the list -- to process (Recursion)
multBy4 (x:xs) = times4 x : multBy4 xs
-- Check if strings are equal with recursion
areStringsEq :: [Char] -> [Char] -> Bool
areStringsEq [] [] = True
areStringsEq (x:xs) (y:ys) = x == y && areStringsEq xs ys
areStringsEq _ _ = False
-- PASSING A FUNCTION INTO A FUNCTION
-- (Int -> Int) says we expect a function that receives an Int and returns an
-- Int
doMult :: (Int -> Int) -> Int
-- We receive the function and pass 3 into it
doMult func = func 3
-- We pass in the function that multiplies by 4
num3Times4 = doMult times4
-- RETURNING A FUNCTION FROM A FUNCTION
getAddFunc :: Int -> (Int -> Int)
-- We can pass in the values to the function
getAddFunc x y = x + y
-- We could also get a function that adds 3 for example
adds3 = getAddFunc 3
fourPlus3 = adds3 4
-- We could use this function with map as well
threePlusList = map adds3 [1,2,3,4,5]
-- ---------- LAMBDA ----------
-- How we create functions without a name
-- \ represents lambda then you have the arguments -> and result
dbl1To10 = map (\x -> x * 2) [1..10]
-- ---------- CONDITIONALS ----------
-- Comparison Operators : < > <= >= == /=
-- Logical Operators : && || not
-- Every if statement must contain an else
doubleEvenNumber y =
if (y `mod` 2 /= 0)
then y
else y * 2
-- We can use case statements
getClass :: Int -> String
getClass n = case n of
5 -> "Go to Kindergarten"
6 -> "Go to elementary school"
_ -> "Go some place else"
-- ---------- MODULES ----------
-- You can group functions into modules. I showed previously how to load them
-- You can create your own module by creating a file that contains all your
-- functions and then list the functions at the top like this
-- module SampFunctions (getClass, doubleEvenNumber) where
-- They can then be imported with import SampFunctions
-- ---------- ENUMERATION TYPES ----------
-- Used when you want a list of possible types
-- Provide name, a list and then Show converts into a String for printing
data BaseballPlayer = Pitcher
| Catcher
| Infield
| Outfield
deriving Show
barryBonds :: BaseballPlayer -> Bool
barryBonds Outfield = True
barryInOF = print(barryBonds Outfield)
-- ---------- CUSTOM TYPES ----------
-- You can store multiple values sort of like a struct to create custom types
data Customer = Customer String String Double
deriving Show
-- Define Customer and its values
tomSmith :: Customer
tomSmith = Customer "Tom Smith" "123 Main St" 20.50
-- Define how we'll find the right customer (By Customer) and the return value
getBalance :: Customer -> Double
getBalance (Customer _ _ b) = b
tomSmithBal = print (getBalance tomSmith)
-- We can define a type with all possible values
data RPS = Rock | Paper | Scissors
shoot :: RPS -> RPS -> String
shoot Paper Rock = "Paper Beats Rock"
shoot Rock Scissors = "Rock Beats Scissors"
shoot Scissors Paper = "Scissors Beat Paper"
shoot Scissors Rock = "Scissors Loses to Rock"
shoot Paper Scissors = "Paper Loses to Scissors"
shoot Rock Paper = "Rock Loses to Paper"
shoot _ _ = "Error"
-- We could define 2 versions of a type
-- First 2 floats are center coordinates and then radius for Circle
-- First 2 floats are for upper left hand corner and bottom right hand corner
-- for the Rectangle
data Shape = Circle Float Float Float | Rectangle Float Float Float Float
deriving (Show)
-- :t Circle = Float -> Float -> Float -> Shape
-- Create a function to calculate area of shapes
area :: Shape -> Float
area (Circle _ _ r) = pi * r ^ 2
area (Rectangle x y x2 y2) = (abs (x2 - x)) * (abs (y2 -y))
-- Could also be area (Rectangle x y x2 y2) = (abs $ x2 - x) * (abs $ y2 -y)
-- $ means that anything that comes after it will take precedence over anything
-- that comes before (Alternative to adding parentheses)
-- The . operator allows you to chain functions to pass output on the right to
-- the input on the left
-- sumValue = putStrLn (show (1 + 2)) becomes
sumValue = putStrLn . show $ 1 + 2
-- Get area of shapes
areaOfCircle = area (Circle 50 60 20)
areaOfRectangle = area $ Rectangle 10 10 100 100
-- ---------- TYPE CLASSES ----------
-- Num, Eq, Ord and Show are type classes
-- Type classes correspond to sets of types which have certain operations
-- defined for them.
-- Polymorphic functions, which work with multiple parameter types, define
-- the types it works with through the use of type classes
-- For example (+) works with parameters of the type Num
-- :t (+) = Num a => a -> a -> a
-- This says that for any type a, as long as a is an instance of Num, + can take
-- 2 values and return an a of type Num
-- Create an Employee and add the ability to check if they are equal
data Employee = Employee { name :: String,
position :: String,
idNum :: Int
} deriving (Eq, Show)
samSmith = Employee {name = "Sam Smith", position = "Manager", idNum = 1000}
pamMarx = Employee {name = "Pam Marx", position = "Sales", idNum = 1001}
isSamPam = samSmith == pamMarx
-- We can print out data because of show
samSmithData = show samSmith
-- Make a type instance of the typeclass Eq and Show
data ShirtSize = S | M | L
instance Eq ShirtSize where
S == S = True
M == M = True
L == L = True
_ == _ = False
instance Show ShirtSize where
show S = "Small"
show M = "Medium"
show L = "Large"
-- Check if S is in the list
smallAvail = S `elem` [S, M, L]
-- Get string value for ShirtSize
theSize = show S
-- Define a custom typeclass that checks for equality
-- a represents any type that implements the function areEqual
class MyEq a where
areEqual :: a -> a -> Bool
-- Allow Bools to check for equality using areEqual
instance MyEq ShirtSize where
areEqual S S = True
areEqual M M = True
areEqual L L = True
areEqual _ _ = False
newSize = areEqual M M
-- ---------- I/O ----------
sayHello = do
-- Prints the string with a new line
putStrLn "What's your name: "
-- Gets user input and stores it in name
name <- getLine
-- $ is used instead of the parentheses
putStrLn $ "Hello " ++ name
-- File IO
-- Write to a file
writeToFile = do
-- Open the file using WriteMode
theFile <- openFile "test.txt" WriteMode
-- Put the text in the file
hPutStrLn theFile ("Random line of text")
-- Close the file
hClose theFile
readFromFile = do
-- Open the file using ReadMode
theFile2 <- openFile "test.txt" ReadMode
-- Get the contents of the file
contents <- hGetContents theFile2
putStr contents
-- Close the file
hClose theFile2
-- ---------- EXAMPLE : FIBONACCI SEQUENCE ----------
-- Calculate the Fibonacci Sequence
-- 1, 1, 2, 3, 5, 8, ...
-- 1 : 1 : says to add 2 1s to the beginning of a list
-- | for every (a, b) add them
-- <- stores a 2 value tuple in a and b
-- tail : get all list items minus the first
-- zip creates pairs using the contents from 2 lists being the lists fib and the
-- list (tail fib)
fib = 1 : 1 : [a + b | (a, b) <- zip fib (tail fib) ]
-- First time through fib = 1 and (tail fib) = 1
-- The list is now [1, 1, 2] because a: 1 + b: 1 = 2
-- The second time through fib = 1 and (tail fib) = 2
-- The list is now [1, 1, 2, 3] because a: 1 + b: 2 = 3
fib300 = fib !! 300 -- Gets the value stored in index 300 of the list
-- take 20 fib returns the first 20 Fibonacci numbers
-- Haskell is a functional programming language
-- Everything is immutable so once a value is set it is set forever
-- Functions can be passed as a parameter to other functions
-- Recursion is used often
-- Haskell has no for, while, or technically variables, but it does have
-- constants
-- Haskell is lazy in that it doesn't execute more then is needed and instead
-- just checks for errors
-- Best Free Haskell Book
-- http://learnyouahaskell.com/chapters
-- Type ghci to open it up in your terminal
-- Load script with :l haskelltut
-- :quit exits the GHCi
-- Import a module
import Data.List
import System.IO
{-
Beginning of multiline comment
-}
-- ---------- DATA TYPES ----------
-- Haskell uses type inference meaning it decides on the data type based on the -- value stored in it
-- Haskell is statically typed and can't switch type after compiling
-- Values can't be changed (Immutable)
-- You can use :t in the terminal to get the data type (:t value)
-- Int : Whole number -2^63 - 2^63
-- :: Int defines that maxInt is an Int
maxInt = maxBound :: Int
minInt = minBound :: Int
-- Integer : Unbounded whole number
-- Float : Single precision floating point number
-- Double : Double precision floating point number (11 pts precision)
bigFloat = 3.99999999999 + 0.00000000005
-- Bool : True or False
-- Char : Single unicode character denoted with single quotes
-- Tuple : Can store a list made up of many data types
-- You declare the permanent value of a variable like this
always5 :: Int
always5 = 5
-- ---------- MATH ----------
-- Something crazy to start
sumOfVals = sum [1..1000]
addEx = 5 + 4
subEx = 5 - 4
multEx = 5 * 4
divEx = 5 / 4
-- mod is a prefix operator
modEx = mod 5 4
-- With back ticks we can use it as an infix operator
modEx2 = 5 `mod` 4
-- Negative numbers must be surrounded with parentheses
negNumEx = 5 + (-4)
-- If you define an Int you must use fromIntegral to use it with sqrt
-- :t sqrt shows that it returns a floating point number
num9 = 9 ::Int
sqrtOf9 = sqrt (fromIntegral num9)
-- Built in math functions
piVal = pi
ePow9 = exp 9
logOf9 = log 9
squared9 = 9 ** 2
truncateVal = truncate 9.999
roundVal = round 9.999
ceilingVal = ceiling 9.999
floorVal = floor 9.999
-- Also sin, cos, tan, asin, atan, acos, sinh, tanh, cosh, asinh, atanh, acosh
trueAndFalse = True && False
trueOrFalse = True || False
notTrue = not(True)
-- Remember you use :t in the terminal to get the data type (:t value)
-- You can also see how functions use data types with :t
-- :t (+) = Num a => a -> a -> a
-- Type a is in the type class num, we receive 2 of them and return 1
-- :t truncate = (RealFrac a, Integral b) => a -> b
-- ---------- LISTS ----------
-- Lists are singly linked and you can only add to the front of it
-- Lists store many elements of the same type
primeNumbers = [3,5,7,11]
-- Concatenate lists (Can be slow if your using a large list)
morePrimes = primeNumbers ++ [13,17,19,23,29]
-- You can use the cons operator to construct a list
favNums = 2 : 7 : 21 : 66 : []
-- You can make a list of lists
multList = [[3,5,7],[11,13,17]]
-- Quick way to add 1 value to the front of a list
morePrimes2 = 2 : morePrimes
-- Get number of elements in the list
lenPrime = length morePrimes2
-- Reverse the list
revPrime = reverse morePrimes2
-- return True if list is empty
isListEmpty = null morePrimes2
-- Get the number in index 1
secondPrime = morePrimes2 !! 1
-- Gets the 1st value in a list
firstPrime = head morePrimes2
-- Gets the last value
lastPrime = last morePrimes2
-- Gets everything but the first value
primeTail = tail morePrimes2
-- Gets everything but the last value
primeInit = init morePrimes2
-- Get specified number of elements from the front of a list
first3Primes = take 3 morePrimes2
-- Return values left after removing specified values
removedPrimes = drop 3 morePrimes2
-- Check if value is in list
is7InList = 7 `elem` morePrimes2
-- Get max value
maxPrime = maximum morePrimes2
-- Get minimum value
minPrime = minimum morePrimes2
-- Sum values in list
sumPrimes = sum morePrimes2
-- Get product of values in list (Value all can evenly divide by)
newList = [2,3,5]
prodPrimes = product newList
-- Create list from 0 to 10
zeroToTen = [0..10]
-- Create list of evens by defining the step between the first 2 values
evenList = [2,4..20]
-- You can use letters as well
letterList = ['A','C'..'Z']
-- You can generate an infinite list and Haskell will only generate what you
-- need
infinPow10 = [10,20..]
-- repeat repeats a value a defined number of times
many2s = take 10 (repeat 2)
-- replicate generates a value a specified number of times
many3s = replicate 10 3
-- cycle replicates the values in a list indefinitely
cycleList = take 10 (cycle [1,2,3,4,5])
-- You could perform operations on all values in a list
-- Cycle through the list storing each value in x which is multiplied by 2 and
-- then stored in a new list
listTimes2 = [x * 2 | x <- [1..10]]
-- We can filter the results with conditions
listTimes3 = [x * 3 | x <- [1..20], x*3 <= 50]
-- Return all values that are divisible by 13 and 9
divisBy9N13 = [x | x <- [1..500], x `mod` 13 == 0, x `mod` 9 == 0]
-- Sort a list
sortedList = sort [9,1,8,3,4,7,6]
-- zipwith can combine lists using a function
sumOfLists = zipWith (+) [1,2,3,4,5] [6,7,8,9,10]
-- Filter returns a list of items that match a condition
listBiggerThen5 = filter (>5) sumOfLists
-- takeWhile returns list items until the condition is false
evensUpTo20 = takeWhile (<=20) [2,4..]
-- foldl applies the operation on each item of a list
-- foldr applies these operations from the right
multOfList = foldl (*) 1 [2,3,4,5]
-- ---------- LIST COMPREHENSION ----------
-- We can generate a list from 1 to 10 to the power of 3
pow3List = [3^n | n <- [1..10]]
-- We can filter the results to only show values divisible by 9
pow3ListDiv9 = [3^n | n <- [1..10], 3^n `mod` 9 == 0]
-- Generate a multiplication table by multiplying x * y where y has the values
-- 1 through 10 and where x does as well
multTable = [[x * y | y <- [1..10]] | x <- [1..10]]
-- ---------- TUPLES ----------
-- Stores list of multiple data types, but has a fixed size
randTuple = (1,"Random tuple")
-- A tuple pair stores 2 values
bobSmith = ("Bob Smith",52)
-- Get the first value
bobsName = fst bobSmith
-- Get the second value
bobsAge = snd bobSmith
-- zip can combine values into tuple pairs
names = ["Bob","Mary","Tom"]
addresses = ["123 Main","234 North","567 South"]
namesNAddress = zip names addresses
-- ---------- FUNCTIONS ----------
-- ghc --make haskelltut compiles your program and executes the main function
-- Functions must start with lowercase letters
-- We can define functions and values in the GHCi with let
-- let num7 = 7
-- let getTriple x = x * 3
-- getTriple num7 = 21
-- main is a function that can be called in the terminal with main
main = do
-- Prints the string with a new line
putStrLn "What's your name: "
-- Gets user input and stores it in name
-- <- Pulls the name entered from an IO action
name <- getLine
putStrLn ("Hello " ++ name)
-- Create function addMe
-- x is a parameter and the operation follows the equals sign
-- The data type passed in will work if it makes sense
-- Every function must return something
-- A function name can't begin with a capital letter
-- A function that doesn't receive parameters is called a definition or name
-- You can define a type declaration for functions
-- funcName :: param1 -> param2 -> returnType
addMe :: Int -> Int -> Int
-- funcName param1 param2 = operations (Returned Value)
-- Execute with : addMe 4 5
addMe x y = x + y
-- Without type declaration you can add floats as well
sumMe x y = x + y
-- You can also add tuples : addTuples (1,2) (3,4) = (4,6)
addTuples :: (Int, Int) -> (Int, Int) -> (Int, Int)
addTuples (x, y) (x2, y2) = (x + x2, y + y2)
-- You can perform different actions based on values
whatAge :: Int -> String
whatAge 16 = "You can drive"
whatAge 18 = "You can vote"
whatAge 21 = "You're an adult"
-- The default
whatAge x = "Nothing Important"
-- Define that we expect an Int in and out
factorial :: Int -> Int
-- If 0 return a 1 (Recursive Function)
factorial 0 = 1
factorial n = n * factorial (n - 1)
-- 3 * factorial (2) : 6
-- 2 * factorial (1) : 2
-- 1 * factorial (0) : 1
-- You could also use product to calculate factorial
productFactorial n = product [1..n]
-- We can use guards that provide different actions based on conditions
isOdd :: Int -> Bool
isOdd n
-- if the modulus using 2 equals 0 return False
| n `mod` 2 == 0 = False
-- Else return True
| otherwise = True
-- This could be shortened to
isEven n = n `mod` 2 == 0
-- Use guards to define the school to output
whatGrade :: Int -> String
whatGrade age
| (age >= 5) && (age <= 6) = "Kindergarten"
| (age > 6) && (age <= 10) = "Elementary School"
| (age > 10) && (age <= 14) = "Middle School"
| (age > 14) && (age <= 18) = "High School"
| otherwise = "Go to college"
-- The where clause keeps us from having to repeat a calculation
batAvgRating :: Double -> Double -> String
batAvgRating hits atBats
| avg <= 0.200 = "Terrible Batting Average"
| avg <= 0.250 = "Average Player"
| avg <= 0.280 = "Your doing pretty good"
| otherwise = "You're a Superstar"
where avg = hits / atBats
-- You can access list items by separating letters with : or get everything but
-- the first item with xs
getListItems :: [Int] -> String
getListItems [] = "Your list is empty"
getListItems (x:[]) = "Your list contains " ++ show x
getListItems (x:y:[]) = "Your list contains " ++ show x ++ " and " ++ show y
getListItems (x:xs) = "The first item is " ++ show x ++ " and the rest are "
++ show xs
-- We can also get values with an As pattern
getFirstItem :: String -> String
getFirstItem [] = "Empty String"
getFirstItem all@(x:xs) = "The first letter in " ++ all ++ " is "
++ [x]
-- ---------- HIGHER ORDER FUNCTIONS ----------
-- Passing of functions as if they are variables
times4 :: Int -> Int
times4 x = x * 4
-- map applies a function to every item in the list
listTimes4 = map times4 [1,2,3,4,5]
-- Let's make map
multBy4 :: [Int] -> [Int]
multBy4 [] = []
-- Takes the 1st value off the list x, multiplies it by 4 and stores it in the
-- new list
-- xs is then passed back into multBy4 until there is nothing left of the list -- to process (Recursion)
multBy4 (x:xs) = times4 x : multBy4 xs
-- Check if strings are equal with recursion
areStringsEq :: [Char] -> [Char] -> Bool
areStringsEq [] [] = True
areStringsEq (x:xs) (y:ys) = x == y && areStringsEq xs ys
areStringsEq _ _ = False