Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Meet Problems on training #6

Open
ToAmadeus opened this issue May 11, 2024 · 0 comments
Open

Meet Problems on training #6

ToAmadeus opened this issue May 11, 2024 · 0 comments

Comments

@ToAmadeus
Copy link

I successfully starting the training,but i meet some the problem which makes my accuracy very low.
'''
Above is part of my training logs,obviously my training loss keeps very high.
[05/11 11:05:31 d2.utils.events]: eta: 0:16:35 iter: 2839 total_loss: 13.81 loss_ce: 1.062 loss_bbox: 0.2362 loss_giou: 0.7347 loss_ce_0: 1.533 loss_bbox_0: 0.4347 loss_giou_0: 1.347 loss_ce_1: 1.076 loss_bbox_1: 0.3313 loss_giou_1: 0.9831 loss_ce_2: 0.983 loss_bbox_2: 0.2493 loss_giou_2: 0.8497 loss_ce_3: 1.095 loss_bbox_3: 0.2378 loss_giou_3: 0.8031 loss_ce_4: 1.037 loss_bbox_4: 0.2179 loss_giou_4: 0.7701 time: 0.4684 last_time: 0.4062 data_time: 0.0213 last_data_time: 0.0158 lr: 2.5e-07 max_mem: 4188M
[05/11 11:05:41 d2.utils.events]: eta: 0:16:28 iter: 2859 total_loss: 15.24 loss_ce: 1.078 loss_bbox: 0.2586 loss_giou: 0.9109 loss_ce_0: 1.416 loss_bbox_0: 0.5326 loss_giou_0: 1.461 loss_ce_1: 1.054 loss_bbox_1: 0.3595 loss_giou_1: 1.137 loss_ce_2: 1.06 loss_bbox_2: 0.3113 loss_giou_2: 1.046 loss_ce_3: 1.061 loss_bbox_3: 0.2689 loss_giou_3: 0.9477 loss_ce_4: 1.049 loss_bbox_4: 0.249 loss_giou_4: 0.9952 time: 0.4684 last_time: 0.5241 data_time: 0.0168 last_data_time: 0.0031 lr: 2.5e-07 max_mem: 4188M
[05/11 11:05:50 d2.utils.events]: eta: 0:16:21 iter: 2879 total_loss: 13.91 loss_ce: 0.9869 loss_bbox: 0.2141 loss_giou: 0.8199 loss_ce_0: 1.447 loss_bbox_0: 0.4575 loss_giou_0: 1.436 loss_ce_1: 1.119 loss_bbox_1: 0.3276 loss_giou_1: 1.095 loss_ce_2: 0.9777 loss_bbox_2: 0.257 loss_giou_2: 0.9116 loss_ce_3: 0.9843 loss_bbox_3: 0.2249 loss_giou_3: 0.8466 loss_ce_4: 0.9701 loss_bbox_4: 0.214 loss_giou_4: 0.8948 time: 0.4685 last_time: 0.4227 data_time: 0.0191 last_data_time: 0.0087 lr: 2.5e-07 max_mem: 4188M
[05/11 11:06:00 d2.utils.events]: eta: 0:16:13 iter: 2899 total_loss: 15.19 loss_ce: 1.103 loss_bbox: 0.2365 loss_giou: 0.9256 loss_ce_0: 1.504 loss_bbox_0: 0.4395 loss_giou_0: 1.279 loss_ce_1: 1.222 loss_bbox_1: 0.3448 loss_giou_1: 1.117 loss_ce_2: 1.162 loss_bbox_2: 0.2908 loss_giou_2: 0.9648 loss_ce_3: 1.125 loss_bbox_3: 0.221 loss_giou_3: 0.8601 loss_ce_4: 1.114 loss_bbox_4: 0.2222 loss_giou_4: 0.8862 time: 0.4684 last_time: 0.3591 data_time: 0.0175 last_data_time: 0.0036 lr: 2.5e-07 max_mem: 4189M
[05/11 11:06:09 d2.utils.events]: eta: 0:16:03 iter: 2919 total_loss: 16.14 loss_ce: 1.177 loss_bbox: 0.2488 loss_giou: 0.9901 loss_ce_0: 1.581 loss_bbox_0: 0.4737 loss_giou_0: 1.483 loss_ce_1: 1.259 loss_bbox_1: 0.3435 loss_giou_1: 1.139 loss_ce_2: 1.111 loss_bbox_2: 0.2833 loss_giou_2: 1.123 loss_ce_3: 1.209 loss_bbox_3: 0.2793 loss_giou_3: 1.077 loss_ce_4: 1.14 loss_bbox_4: 0.2468 loss_giou_4: 0.9795 time: 0.4683 last_time: 0.4238 data_time: 0.0216 last_data_time: 0.0247 lr: 2.5e-07 max_mem: 4189M
[05/11 11:06:18 d2.utils.events]: eta: 0:15:52 iter: 2939 total_loss: 14.07 loss_ce: 1.022 loss_bbox: 0.2032 loss_giou: 0.8397 loss_ce_0: 1.466 loss_bbox_0: 0.4374 loss_giou_0: 1.336 loss_ce_1: 1.121 loss_bbox_1: 0.3034 loss_giou_1: 1.064 loss_ce_2: 1.03 loss_bbox_2: 0.2275 loss_giou_2: 0.8407 loss_ce_3: 1.004 loss_bbox_3: 0.2181 loss_giou_3: 0.8761 loss_ce_4: 1.032 loss_bbox_4: 0.2072 loss_giou_4: 0.8682 time: 0.4682 last_time: 0.6090 data_time: 0.0136 last_data_time: 0.0056 lr: 2.5e-07 max_mem: 4189M
[05/11 11:06:27 d2.utils.events]: eta: 0:15:43 iter: 2959 total_loss: 14.88 loss_ce: 1.016 loss_bbox: 0.2088 loss_giou: 0.8485 loss_ce_0: 1.406 loss_bbox_0: 0.5361 loss_giou_0: 1.509 loss_ce_1: 1.142 loss_bbox_1: 0.359 loss_giou_1: 1.156 loss_ce_2: 1.006 loss_bbox_2: 0.3124 loss_giou_2: 0.988 loss_ce_3: 1.055 loss_bbox_3: 0.2405 loss_giou_3: 0.9191 loss_ce_4: 1.029 loss_bbox_4: 0.2193 loss_giou_4: 0.8009 time: 0.4682 last_time: 0.6083 data_time: 0.0237 last_data_time: 0.0375 lr: 2.5e-07 max_mem: 4189M
[05/11 11:06:36 d2.utils.events]: eta: 0:15:29 iter: 2979 total_loss: 15.37 loss_ce: 1.096 loss_bbox: 0.2677 loss_giou: 0.8776 loss_ce_0: 1.494 loss_bbox_0: 0.4445 loss_giou_0: 1.361 loss_ce_1: 1.137 loss_bbox_1: 0.2767 loss_giou_1: 1.035 loss_ce_2: 1.104 loss_bbox_2: 0.2791 loss_giou_2: 1.006 loss_ce_3: 1.126 loss_bbox_3: 0.2635 loss_giou_3: 0.9505 loss_ce_4: 1.106 loss_bbox_4: 0.2859 loss_giou_4: 1.016 time: 0.4679 last_time: 0.4104 data_time: 0.0196 last_data_time: 0.0030 lr: 2.5e-07 max_mem: 4189M
'''

And here is my config.yaml
'''
CUDNN_BENCHMARK: false
DATALOADER:
ASPECT_RATIO_GROUPING: true
FILTER_EMPTY_ANNOTATIONS: false
NUM_WORKERS: 4
REPEAT_THRESHOLD: 0.0
SAMPLER_TRAIN: TrainingSampler
DATASETS:
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
PROPOSAL_FILES_TEST: []
PROPOSAL_FILES_TRAIN: []
TEST:

  • coco_2017_val
    TRAIN:
  • coco_2017_train
    GLOBAL:
    HACK: 1.0
    INPUT:
    CROP:
    ENABLED: false
    SIZE:
    • 0.9
    • 0.9
      TYPE: absolute_range
      FORMAT: RGB
      MASK_FORMAT: polygon
      MAX_SIZE_TEST: 1800
      MAX_SIZE_TRAIN: 1800
      MIN_SIZE_TEST: 800
      MIN_SIZE_TRAIN:
  • 800
  • 1000
  • 1200
  • 1500
    MIN_SIZE_TRAIN_SAMPLING: choice
    RANDOM_FLIP: horizontal
    MODEL:
    ANCHOR_GENERATOR:
    ANGLES:
      • -90
      • 0
      • 90
        ASPECT_RATIOS:
      • 0.5
      • 1.0
      • 2.0
        NAME: DefaultAnchorGenerator
        OFFSET: 0.0
        SIZES:
      • 32
      • 64
      • 128
      • 256
      • 512
        BACKBONE:
        FREEZE_AT: 2
        NAME: build_resnet_fpn_backbone
        DEVICE: cuda
        DiffusionDet:
        ACTIVATION: relu
        ALPHA: 0.25
        CLASS_WEIGHT: 2.0
        DEEP_SUPERVISION: true
        DIM_DYNAMIC: 64
        DIM_FEEDFORWARD: 2048
        DROPOUT: 0.0
        GAMMA: 2.0
        GIOU_WEIGHT: 2.0
        HIDDEN_DIM: 256
        L1_WEIGHT: 5.0
        NHEADS: 8
        NO_OBJECT_WEIGHT: 0.1
        NUM_CLASSES: 7
        NUM_CLS: 1
        NUM_DYNAMIC: 2
        NUM_HEADS: 6
        NUM_PROPOSALS: 500
        NUM_REG: 3
        OTA_K: 5
        PRIOR_PROB: 0.01
        SAMPLE_STEP: 1
        SNR_SCALE: 2.0
        USE_FED_LOSS: false
        USE_FOCAL: true
        USE_NMS: true
        FPN:
        FUSE_TYPE: sum
        IN_FEATURES:
    • res2
    • res3
    • res4
    • res5
      NORM: ''
      OUT_CHANNELS: 256
      KEYPOINT_ON: false
      LOAD_PROPOSALS: false
      MASK_ON: false
      META_ARCHITECTURE: DiffusionDet
      PANOPTIC_FPN:
      COMBINE:
      ENABLED: true
      INSTANCES_CONFIDENCE_THRESH: 0.5
      OVERLAP_THRESH: 0.5
      STUFF_AREA_LIMIT: 4096
      INSTANCE_LOSS_WEIGHT: 1.0
      PIXEL_MEAN:
  • 23.7354
  • 23.7354
  • 23.7354
    PIXEL_STD:
  • 27.256
  • 27.256
  • 27.256
    PROPOSAL_GENERATOR:
    MIN_SIZE: 0
    NAME: RPN
    RESNETS:
    DEFORM_MODULATED: false
    DEFORM_NUM_GROUPS: 1
    DEFORM_ON_PER_STAGE:
    • false
    • false
    • false
    • false
      DEPTH: 50
      NORM: FrozenBN
      NUM_GROUPS: 1
      OUT_FEATURES:
    • res2
    • res3
    • res4
    • res5
      RES2_OUT_CHANNELS: 256
      RES5_DILATION: 1
      STEM_OUT_CHANNELS: 64
      STRIDE_IN_1X1: false
      WIDTH_PER_GROUP: 64
      RETINANET:
      BBOX_REG_LOSS_TYPE: smooth_l1
      BBOX_REG_WEIGHTS: &id002
    • 1.0
    • 1.0
    • 1.0
    • 1.0
      FOCAL_LOSS_ALPHA: 0.25
      FOCAL_LOSS_GAMMA: 2.0
      IN_FEATURES:
    • p3
    • p4
    • p5
    • p6
    • p7
      IOU_LABELS:
    • 0
    • -1
    • 1
      IOU_THRESHOLDS:
    • 0.4
    • 0.5
      NMS_THRESH_TEST: 0.5
      NORM: ''
      NUM_CLASSES: 7
      NUM_CONVS: 4
      PRIOR_PROB: 0.01
      SCORE_THRESH_TEST: 0.05
      SMOOTH_L1_LOSS_BETA: 0.1
      TOPK_CANDIDATES_TEST: 1000
      ROI_BOX_CASCADE_HEAD:
      BBOX_REG_WEIGHTS:
    • &id001
      • 10.0
      • 10.0
      • 5.0
      • 5.0
      • 20.0
      • 20.0
      • 10.0
      • 10.0
      • 30.0
      • 30.0
      • 15.0
      • 15.0
        IOUS:
    • 0.5
    • 0.6
    • 0.7
      ROI_BOX_HEAD:
      BBOX_REG_LOSS_TYPE: smooth_l1
      BBOX_REG_LOSS_WEIGHT: 1.0
      BBOX_REG_WEIGHTS: *id001
      CLS_AGNOSTIC_BBOX_REG: false
      CONV_DIM: 256
      FC_DIM: 1024
      FED_LOSS_FREQ_WEIGHT_POWER: 0.5
      FED_LOSS_NUM_CLASSES: 50
      NAME: ''
      NORM: ''
      NUM_CONV: 0
      NUM_FC: 0
      POOLER_RESOLUTION: 7
      POOLER_SAMPLING_RATIO: 2
      POOLER_TYPE: ROIAlignV2
      SMOOTH_L1_BETA: 0.0
      TRAIN_ON_PRED_BOXES: false
      USE_FED_LOSS: false
      USE_SIGMOID_CE: false
      ROI_HEADS:
      BATCH_SIZE_PER_IMAGE: 512
      IN_FEATURES:
    • p2
    • p3
    • p4
    • p5
      IOU_LABELS:
    • 0
    • 1
      IOU_THRESHOLDS:
    • 0.5
      NAME: Res5ROIHeads
      NMS_THRESH_TEST: 0.5
      NUM_CLASSES: 7
      POSITIVE_FRACTION: 0.25
      PROPOSAL_APPEND_GT: true
      SCORE_THRESH_TEST: 0.05
      ROI_KEYPOINT_HEAD:
      CONV_DIMS:
    • 512
    • 512
    • 512
    • 512
    • 512
    • 512
    • 512
    • 512
      LOSS_WEIGHT: 1.0
      MIN_KEYPOINTS_PER_IMAGE: 1
      NAME: KRCNNConvDeconvUpsampleHead
      NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
      NUM_KEYPOINTS: 17
      POOLER_RESOLUTION: 14
      POOLER_SAMPLING_RATIO: 0
      POOLER_TYPE: ROIAlignV2
      ROI_MASK_HEAD:
      CLS_AGNOSTIC_MASK: false
      CONV_DIM: 256
      NAME: MaskRCNNConvUpsampleHead
      NORM: ''
      NUM_CONV: 0
      POOLER_RESOLUTION: 14
      POOLER_SAMPLING_RATIO: 0
      POOLER_TYPE: ROIAlignV2
      RPN:
      BATCH_SIZE_PER_IMAGE: 256
      BBOX_REG_LOSS_TYPE: smooth_l1
      BBOX_REG_LOSS_WEIGHT: 1.0
      BBOX_REG_WEIGHTS: *id002
      BOUNDARY_THRESH: -1
      CONV_DIMS:
    • -1
      HEAD_NAME: StandardRPNHead
      IN_FEATURES:
    • res4
      IOU_LABELS:
    • 0
    • -1
    • 1
      IOU_THRESHOLDS:
    • 0.3
    • 0.7
      LOSS_WEIGHT: 1.0
      NMS_THRESH: 0.7
      POSITIVE_FRACTION: 0.5
      POST_NMS_TOPK_TEST: 1000
      POST_NMS_TOPK_TRAIN: 2000
      PRE_NMS_TOPK_TEST: 6000
      PRE_NMS_TOPK_TRAIN: 12000
      SMOOTH_L1_BETA: 0.0
      SEM_SEG_HEAD:
      COMMON_STRIDE: 4
      CONVS_DIM: 128
      IGNORE_VALUE: 255
      IN_FEATURES:
    • p2
    • p3
    • p4
    • p5
      LOSS_WEIGHT: 1.0
      NAME: SemSegFPNHead
      NORM: GN
      NUM_CLASSES: 54
      SWIN:
      OUT_FEATURES:
    • 0
    • 1
    • 2
    • 3
      SIZE: B
      USE_CHECKPOINT: false
      WEIGHTS: detectron2://ImageNetPretrained/torchvision/R-50.pkl
      MODEL_EMA:
      DECAY: 0.999
      DEVICE: ''
      ENABLED: false
      USE_EMA_WEIGHTS_FOR_EVAL_ONLY: false
      YOLOX: false
      OUTPUT_DIR: ./output
      SEED: 40244023
      SOLVER:
      AMP:
      ENABLED: false
      BACKBONE_MULTIPLIER: 1.0
      BASE_LR: 5.0e-06
      BASE_LR_END: 0.0
      BIAS_LR_FACTOR: 1.0
      CHECKPOINT_PERIOD: 5000
      CLIP_GRADIENTS:
      CLIP_TYPE: full_model
      CLIP_VALUE: 1.0
      ENABLED: true
      NORM_TYPE: 2.0
      GAMMA: 0.05
      IMS_PER_BATCH: 1
      LR_SCHEDULER_NAME: WarmupMultiStepLR
      MAX_ITER: 5000
      MOMENTUM: 0.9
      NESTEROV: false
      NUM_DECAYS: 3
      OPTIMIZER: ADAMW
      REFERENCE_WORLD_SIZE: 0
      RESCALE_INTERVAL: false
      STEPS:
  • 2000
  • 3999
    WARMUP_FACTOR: 0.01
    WARMUP_ITERS: 1000
    WARMUP_METHOD: linear
    WEIGHT_DECAY: 0.0001
    WEIGHT_DECAY_BIAS: null
    WEIGHT_DECAY_NORM: 0.0
    TEST:
    AUG:
    CVPODS_TTA: true
    ENABLED: false
    FLIP: true
    MAX_SIZE: 4000
    MIN_SIZES:
    • 400
    • 500
    • 600
    • 640
    • 700
    • 900
    • 1000
    • 1100
    • 1200
    • 1300
    • 1400
    • 1500
    • 1800
    • 800
      SCALE_FILTER: true
      SCALE_RANGES:
      • 96
      • 10000
      • 96
      • 10000
      • 64
      • 10000
      • 64
      • 10000
      • 64
      • 10000
      • 0
      • 10000
      • 0
      • 10000
      • 0
      • 256
      • 0
      • 256
      • 0
      • 192
      • 0
      • 192
      • 0
      • 96
      • 0
      • 10000
        DETECTIONS_PER_IMAGE: 100
        EVAL_PERIOD: 3000
        EXPECTED_RESULTS: []
        KEYPOINT_OKS_SIGMAS: []
        PRECISE_BN:
        ENABLED: false
        NUM_ITER: 200
        VERSION: 2
        VIS_PERIOD: 0
        '''

And my result is very terrible
'''

category AP category AP category AP
A220 0.533 A320/321 0.490 A330 0.000
ARJ21 0.102 Boeing737 0.171 Boeing787 0.120
other 0.813
'''
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant