-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathpredictor.py
306 lines (241 loc) · 13.2 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import torch
from torch import nn
from utils.checkpointing import load_checkpoint, load_vocab
from utils.utils import tile
from models.model import SummarizationModel
from data.dataset import *
import time
from tqdm import tqdm
from utils.utils import compute_rouge_scores
class Predictor(object):
def __init__(self, hparams, model=None, vocab_word=None, vocab_role=None,
vocab_pos=None, checkpoint=None, summary_writer=None):
super(Predictor, self).__init__()
self.hparams = hparams
self.model = model
self.vocab_word = vocab_word
self.vocab_role = vocab_role
self.vocab_pos = vocab_pos
self.device = hparams.device
self.batch_size = hparams.batch_size
# Beam-search configuration
self.min_length = hparams.min_length
self.gen_max_length = hparams.gen_max_length
self.beam_size = hparams.beam_size
self.start_token_id = self.vocab_word.token2id['<BEGIN>']
self.end_token_id = self.vocab_word.token2id['<END>']
self.device = hparams.device
self.summary_writer = summary_writer
if (model == None) and (checkpoint != ''):
self.build_model()
if self.vocab_word is None:
self.vocab_word = load_vocab(self.hparams.vocab_word_path)
model_state_dict, optimizer_state_dict = load_checkpoint(self.hparams.load_pthpath)
print('============= Loading Trained Model from: ', self.hparams.load_pthpath, ' ==================')
if isinstance(self.model, nn.DataParallel):
self.model.module.load_state_dict(model_state_dict)
else:
self.model.load_state_dict(model_state_dict, strict=True)
def build_model(self):
# Define model
self.model = SummarizationModel(hparams=self.hparams, vocab_word=self.vocab_word,
vocab_role=self.vocab_role, vocab_pos=self.vocab_pos)
# Multi-GPU
self.model = self.model.to(self.device)
# # Use Multi-GPUs
if -1 not in self.hparams.gpu_ids and len(self.hparams.gpu_ids) > 1:
self.model = nn.DataPzarallel(self.model, self.hparams.gpu_ids)
def generator(self, decoder_outputs):
logits = self.model.final_linear(decoder_outputs)
shape = logits.shape
logits = logits.view(shape[0] * shape[1], shape[-1]) # [beam_size x tgt_seq_len, vocab_size]
softmax = nn.LogSoftmax(dim=-1)
probs = softmax(logits)
return logits, probs
def get_summaries(self, idxs):
tokens = [self.vocab_word.id2token[idx.item()] for idx in idxs]
summary = ' '.join(tokens)
return summary
def get_summaries_from_logits(self, logits):
# logits : [batch x tgt_seq_len, vocab_size]
softmax = nn.LogSoftmax(dim=-1)
probs = softmax(logits)
max_indices = torch.argmax(probs, dim=1)
tokens = [self.vocab_word.id2token[idx.item()] for idx in max_indices]
summary = ' '.join(tokens)
return max_indices, summary
def evaluate(self, test_dataloader, epoch=None, eval_path=None):
# model_state_dict, optimizer_state_dict = load_checkpoint(eval_path)
#
# print('============= Loading Trained Model from: ', eval_path, ' ==================')
# if isinstance(self.model, nn.DataParallel):
# self.model.module.load_state_dict(model_state_dict)
# else:
# self.model.load_state_dict(model_state_dict, strict=True)
with torch.no_grad():
cand_list = []
ref_list = []
for batch_idx, batch in enumerate(tqdm(test_dataloader)):
data = batch
dialogues_ids = data['dialogues_ids'].to(self.device)
pos_ids = data['pos_ids'].to(self.device)
labels_ids = data['labels_ids'].to(self.device) # [batch, tgt_seq_len]
src_masks = data['src_masks'].to(self.device)
role_ids = data['role_ids'].to(self.device)
reference_summaries = self.get_summaries(labels_ids[0])
reference_summaries = reference_summaries.replace('<BEGIN>', '').replace('<END>', '')
generated_summaries = self.inference(inputs=dialogues_ids, src_masks=src_masks,
role_ids=role_ids, pos_ids=pos_ids)
cand_list.append(generated_summaries)
ref_list.append(reference_summaries)
results_dict = compute_rouge_scores(cand_list, ref_list)
print('[ROUGE]: ', results_dict)
if epoch is not None:
self.summary_writer.add_scalar('test/rouge-F1', results_dict['rouge_1_f_score'], epoch)
self.summary_writer.add_scalar('test/rouge-F2', results_dict['rouge_2_f_score'], epoch)
self.summary_writer.add_scalar('test/rouge-FL', results_dict['rouge_l_f_score'], epoch)
def inference(self, inputs, src_masks, role_ids=None, pos_ids=None):
# Give full probability to the first beam on the first step.
topk_log_probs = (
torch.tensor([0.0] + [float("-inf")] * (self.beam_size - 1),
device=self.device).repeat(self.batch_size))
alive_seq = torch.full(
[self.batch_size * self.beam_size, 1],
self.start_token_id,
dtype=torch.long,
device=self.device)
batch_offset = torch.arange(
self.batch_size, dtype=torch.long, device=self.device)
beam_offset = torch.arange(
0,
self.batch_size * self.beam_size,
step=self.beam_size,
dtype=torch.long,
device=self.device)
hypotheses = [[] for _ in range(self.batch_size)]
results = {}
results["predictions"] = [[] for _ in range(self.batch_size)] # noqa: F812
results["scores"] = [[] for _ in range(self.batch_size)] # noqa: F812
results["gold_score"] = [0] * self.batch_size
# construct inputs
inputs = torch.squeeze(inputs, 0) # [num_turns, seq_len]
inputs_word_emb = self.model.embedding_word(inputs) # [num_turns, seq_len, 300]
src_masks = src_masks.squeeze(0)
if self.hparams.use_pos:
pos_ids = torch.squeeze(pos_ids, 0)
inputs_pos_emb = self.model.embedding_pos(pos_ids) # [num_turns, seq_len, pos_dim==12]
inputs_word_emb = torch.cat((inputs_word_emb, inputs_pos_emb), -1)
word_level_outputs = self.model.word_level_encoder(inputs=inputs_word_emb,
src_masks=src_masks) # [num_turns, seq_len, 300]
turn_level_inputs = word_level_outputs[:, 0] # [num_turns, 300]
turn_level_inputs = torch.unsqueeze(turn_level_inputs, 0) # [1, num_turns, 300]
if self.hparams.use_role:
role_ids = role_ids.squeeze(-1)
turn_level_role_emb = self.model.embedding_role(role_ids) # [1, num_turns, role_dim==30]
turn_level_outputs = self.model.turn_level_encoder(inputs=turn_level_inputs,
src_masks=None,
role_inputs=turn_level_role_emb) # [1, num_turns, 300]
else:
turn_level_outputs = self.model.turn_level_encoder(inputs=turn_level_inputs) # [1, num_turns, 300]
# word_level_outputs = word_level_outputs[:, 1:]
word_level_shape = word_level_outputs.shape
word_level_outputs = word_level_outputs.reshape(word_level_shape[0] * word_level_shape[1], 300)
word_level_outputs = word_level_outputs.unsqueeze(0) # [1, num_turns * seq_len, 300]
decoder_state = self.model.decoder.init_decoder_state()
decoder_state.map_batch_fn(
lambda state, dim: tile(state, self.beam_size, dim=dim))
word_level_memory_beam = word_level_outputs.detach().repeat(self.beam_size, 1, 1) # [beam_size, num_turns * seq_len, 300]
turn_level_memory_beam = turn_level_outputs.detach().repeat(self.beam_size, 1, 1) # [beam_size, num_turns, 300]
for step in tqdm(range(self.gen_max_length)):
tgt_inputs = alive_seq[:, -1].view(1, -1).transpose(0, 1) # (beam_size, tgt_seq_len==1)
tgt_word_emb = self.model.embedding_word(tgt_inputs) # (beam_size, tgt_seq_len==1, 300)
decoder_outputs, decoder_state = self.model.decoder(
inputs=(tgt_word_emb, word_level_memory_beam, turn_level_memory_beam),
state=decoder_state, step=step)
logits, log_probs = self.generator(decoder_outputs) # logits: [beam_size, tgt_seq_len==1, vocab_size]
log_probs = log_probs.squeeze(1) # [beam_size, vocab_size]
vocab_size = log_probs.size(1)
if step < self.min_length:
log_probs[:, self.end_token_id] = -1e20
# Multiply probs by the beam probability.
log_probs += topk_log_probs.view(-1).unsqueeze(1)
alpha = 0.6
length_penalty = ((5.0 + (step + 1)) / 6.0) ** alpha
# Flatten probs into a list of possibilities.
curr_scores = log_probs / length_penalty
if self.hparams.blook_trigram:
# Trigram-Blocking
cur_len = alive_seq.size(1)
if (cur_len > 3):
for i in range(self.beam_size): # For each (batch x beam_size)
fail = False
words = map(lambda n: int(n), alive_seq[i])
words = list(map(lambda w: self.vocab_word.id2token[w], words))
if (len(words) <= 3):
continue
trigrams = [(words[i - 1], words[i], words[i + 1]) for i in range(1, len(words) - 1)]
trigram = tuple(trigrams[-1])
if trigram in trigrams[:-1]:
fail = True
if fail:
curr_scores[i] = -1e20
curr_scores = curr_scores.reshape(-1, self.beam_size * vocab_size)
topk_scores, topk_ids = curr_scores.topk(self.beam_size, dim=-1)
# Recover log probs.
topk_log_probs = topk_scores * length_penalty
# Resolve beam origin and true word ids.
topk_beam_index = topk_ids.div(vocab_size)
topk_ids = topk_ids.fmod(vocab_size)
# Map beam_index to batch_index in the flat representation.
batch_index = (
topk_beam_index
+ beam_offset[:topk_beam_index.size(0)].unsqueeze(1))
select_indices = batch_index.view(-1)
# Append last prediction.
alive_seq = torch.cat(
[alive_seq.index_select(0, select_indices),
topk_ids.view(-1, 1)], -1)
is_finished = topk_ids.eq(self.end_token_id)
if step + 1 == self.gen_max_length:
is_finished.fill_(1)
end_condition = is_finished[:, 0].eq(1)
if is_finished.any():
predictions = alive_seq.view(-1, self.beam_size, alive_seq.size(-1))
for i in range(is_finished.size(0)):
b = batch_offset[i]
if end_condition[i]:
is_finished[i].fill_(1)
finished_hyp = is_finished[i].nonzero().view(-1)
# Store finished hypotheses for this batch.
for j in finished_hyp:
hypotheses[b].append((
topk_scores[i, j],
predictions[i, j, 1:]))
# If the batch reached the end, save the n_best hypotheses.
if end_condition[i]:
best_hyp = sorted(
hypotheses[b], key=lambda x: x[0], reverse=True)
score, pred = best_hyp[0]
results["scores"][b].append(score)
results["predictions"][b].append(pred)
non_finished = end_condition.eq(0).nonzero().view(-1)
# If all sentences are translated, no need to go further.
if len(non_finished) == 0:
break
# Remove finished batches for the next step.
topk_log_probs = topk_log_probs.index_select(0, non_finished)
batch_index = batch_index.index_select(0, non_finished)
batch_offset = batch_offset.index_select(0, non_finished)
alive_seq = predictions.index_select(0, non_finished) \
.view(-1, alive_seq.size(-1))
# Reorder states.
select_indices = batch_index.view(-1)
word_level_memory_beam = word_level_memory_beam.index_select(0, select_indices)
turn_level_memory_beam = turn_level_memory_beam.index_select(0, select_indices)
decoder_state.map_batch_fn(
lambda state, dim: state.index_select(dim, select_indices))
preds = results['predictions'][0][0]
summary = self.get_summaries(preds)
summary = summary.replace('<EOS>', '').replace('<END>', '')
print('[Generated_Summaries]: ', summary)
return summary