-
Notifications
You must be signed in to change notification settings - Fork 5
/
1.5.0-DEV-51f1710d7e.log
947 lines (900 loc) · 59.7 KB
/
1.5.0-DEV-51f1710d7e.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
Julia Version 1.5.0-DEV.212
Commit 51f1710d7e (2020-01-31 07:16 UTC)
Platform Info:
OS: Linux (x86_64-pc-linux-gnu)
CPU: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-9.0.1 (ORCJIT, skylake)
Environment:
JULIA_DEPOT_PATH = ::/usr/local/share/julia
JULIA_NUM_THREADS = 2
Resolving package versions...
Installed OpenBLAS_jll ──────────────── v0.3.7+5
Installed Tables ────────────────────── v0.2.11
Installed Arpack_jll ────────────────── v3.5.0+2
Installed Parsers ───────────────────── v0.3.11
Installed Rmath ─────────────────────── v0.6.0
Installed MLJ ───────────────────────── v0.7.0
Installed DocStringExtensions ───────── v0.8.1
Installed MLJModels ─────────────────── v0.7.1
Installed Missings ──────────────────── v0.4.3
Installed DataAPI ───────────────────── v1.1.0
Installed DataValueInterfaces ───────── v1.0.0
Installed ComputationalResources ────── v0.3.0
Installed ScientificTypes ───────────── v0.5.1
Installed Reexport ──────────────────── v0.2.0
Installed JSON ──────────────────────── v0.21.0
Installed StatsBase ─────────────────── v0.32.0
Installed InvertedIndices ───────────── v1.0.0
Installed PDMats ────────────────────── v0.9.11
Installed SortingAlgorithms ─────────── v0.3.1
Installed IteratorInterfaceExtensions ─ v1.0.0
Installed SpecialFunctions ──────────── v0.9.0
Installed ColorTypes ────────────────── v0.8.1
Installed ProgressMeter ─────────────── v1.2.0
Installed CategoricalArrays ─────────── v0.7.7
Installed Compat ────────────────────── v2.2.0
Installed FillArrays ────────────────── v0.8.4
Installed BinaryProvider ────────────── v0.5.8
Installed Crayons ───────────────────── v4.0.1
Installed RecipesBase ───────────────── v0.7.0
Installed MultivariateStats ─────────── v0.7.0
Installed OrderedCollections ────────── v1.1.0
Installed MLJBase ───────────────────── v0.10.1
Installed DataStructures ────────────── v0.17.9
Installed LearnBase ─────────────────── v0.2.2
Installed Distances ─────────────────── v0.8.2
Installed FixedPointNumbers ─────────── v0.7.1
Installed Arpack ────────────────────── v0.4.0
Installed StatsFuns ─────────────────── v0.9.3
Installed LossFunctions ─────────────── v0.5.1
Installed Requires ──────────────────── v0.5.2
Installed TableTraits ───────────────── v1.0.0
Installed Parameters ────────────────── v0.12.0
Installed QuadGK ────────────────────── v2.3.1
Installed OpenSpecFun_jll ───────────── v0.5.3+1
Installed Formatting ────────────────── v0.4.1
Installed Distributions ─────────────── v0.21.12
Installed PrettyTables ──────────────── v0.6.0
#=#=# # 2.1%#### 6.9%######### 13.2%############## 20.2%###################### 30.7%############################## 42.8%################################# 46.7%############################################## 64.3%############################################################# 84.7%######################################################################## 100.0%
#=#=# ######################################################################## 100.0%
#=#=# ######################################################################## 100.0%
Updating `~/.julia/environments/v1.5/Project.toml`
[add582a8] + MLJ v0.7.0
Updating `~/.julia/environments/v1.5/Manifest.toml`
[7d9fca2a] + Arpack v0.4.0
[68821587] + Arpack_jll v3.5.0+2
[b99e7846] + BinaryProvider v0.5.8
[324d7699] + CategoricalArrays v0.7.7
[3da002f7] + ColorTypes v0.8.1
[34da2185] + Compat v2.2.0
[ed09eef8] + ComputationalResources v0.3.0
[a8cc5b0e] + Crayons v4.0.1
[9a962f9c] + DataAPI v1.1.0
[864edb3b] + DataStructures v0.17.9
[e2d170a0] + DataValueInterfaces v1.0.0
[b4f34e82] + Distances v0.8.2
[31c24e10] + Distributions v0.21.12
[ffbed154] + DocStringExtensions v0.8.1
[1a297f60] + FillArrays v0.8.4
[53c48c17] + FixedPointNumbers v0.7.1
[59287772] + Formatting v0.4.1
[41ab1584] + InvertedIndices v1.0.0
[82899510] + IteratorInterfaceExtensions v1.0.0
[682c06a0] + JSON v0.21.0
[7f8f8fb0] + LearnBase v0.2.2
[30fc2ffe] + LossFunctions v0.5.1
[add582a8] + MLJ v0.7.0
[a7f614a8] + MLJBase v0.10.1
[d491faf4] + MLJModels v0.7.1
[e1d29d7a] + Missings v0.4.3
[6f286f6a] + MultivariateStats v0.7.0
[4536629a] + OpenBLAS_jll v0.3.7+5
[efe28fd5] + OpenSpecFun_jll v0.5.3+1
[bac558e1] + OrderedCollections v1.1.0
[90014a1f] + PDMats v0.9.11
[d96e819e] + Parameters v0.12.0
[69de0a69] + Parsers v0.3.11
[08abe8d2] + PrettyTables v0.6.0
[92933f4c] + ProgressMeter v1.2.0
[1fd47b50] + QuadGK v2.3.1
[3cdcf5f2] + RecipesBase v0.7.0
[189a3867] + Reexport v0.2.0
[ae029012] + Requires v0.5.2
[79098fc4] + Rmath v0.6.0
[321657f4] + ScientificTypes v0.5.1
[a2af1166] + SortingAlgorithms v0.3.1
[276daf66] + SpecialFunctions v0.9.0
[2913bbd2] + StatsBase v0.32.0
[4c63d2b9] + StatsFuns v0.9.3
[3783bdb8] + TableTraits v1.0.0
[bd369af6] + Tables v0.2.11
[2a0f44e3] + Base64
[ade2ca70] + Dates
[8bb1440f] + DelimitedFiles
[8ba89e20] + Distributed
[9fa8497b] + Future
[b77e0a4c] + InteractiveUtils
[76f85450] + LibGit2
[8f399da3] + Libdl
[37e2e46d] + LinearAlgebra
[56ddb016] + Logging
[d6f4376e] + Markdown
[a63ad114] + Mmap
[44cfe95a] + Pkg
[de0858da] + Printf
[3fa0cd96] + REPL
[9a3f8284] + Random
[ea8e919c] + SHA
[9e88b42a] + Serialization
[1a1011a3] + SharedArrays
[6462fe0b] + Sockets
[2f01184e] + SparseArrays
[10745b16] + Statistics
[4607b0f0] + SuiteSparse
[8dfed614] + Test
[cf7118a7] + UUIDs
[4ec0a83e] + Unicode
Building Rmath → `~/.julia/packages/Rmath/BoBag/deps/build.log`
Testing MLJ
#=#=# ##################################################### 74.2%######################################################################## 100.0%
#=#=# # 1.8%############## 19.7%################################## 47.6%############################################################### 87.6%######################################################################## 100.0%
#=#=# ########################################### 59.8%######################################################################## 100.0%
Status `/tmp/jl_m1zr1k/Manifest.toml`
[7d9fca2a] Arpack v0.4.0
[68821587] Arpack_jll v3.5.0+2
[b99e7846] BinaryProvider v0.5.8
[336ed68f] CSV v0.5.23
[324d7699] CategoricalArrays v0.7.7
[944b1d66] CodecZlib v0.6.0
[3da002f7] ColorTypes v0.8.1
[34da2185] Compat v2.2.0
[ed09eef8] ComputationalResources v0.3.0
[a8cc5b0e] Crayons v4.0.1
[9a962f9c] DataAPI v1.1.0
[a93c6f00] DataFrames v0.20.0
[864edb3b] DataStructures v0.17.9
[e2d170a0] DataValueInterfaces v1.0.0
[7806a523] DecisionTree v0.10.1
[b4f34e82] Distances v0.8.2
[31c24e10] Distributions v0.21.12
[ffbed154] DocStringExtensions v0.8.1
[e2ba6199] ExprTools v0.1.0
[8f5d6c58] EzXML v1.1.0
[5789e2e9] FileIO v1.2.1
[48062228] FilePathsBase v0.7.0
[1a297f60] FillArrays v0.8.4
[53c48c17] FixedPointNumbers v0.7.1
[59287772] Formatting v0.4.1
[41ab1584] InvertedIndices v1.0.0
[82899510] IteratorInterfaceExtensions v1.0.0
[682c06a0] JSON v0.21.0
[7f8f8fb0] LearnBase v0.2.2
[94ce4f54] Libiconv_jll v1.16.0+1
[30fc2ffe] LossFunctions v0.5.1
[add582a8] MLJ v0.7.0
[a7f614a8] MLJBase v0.10.1
[d491faf4] MLJModels v0.7.1
[e1d29d7a] Missings v0.4.3
[78c3b35d] Mocking v0.7.1
[6f286f6a] MultivariateStats v0.7.0
[b8a86587] NearestNeighbors v0.4.4
[4536629a] OpenBLAS_jll v0.3.7+5
[efe28fd5] OpenSpecFun_jll v0.5.3+1
[bac558e1] OrderedCollections v1.1.0
[90014a1f] PDMats v0.9.11
[d96e819e] Parameters v0.12.0
[69de0a69] Parsers v0.3.11
[2dfb63ee] PooledArrays v0.5.3
[08abe8d2] PrettyTables v0.6.0
[92933f4c] ProgressMeter v1.2.0
[1fd47b50] QuadGK v2.3.1
[df47a6cb] RData v0.6.3
[ce6b1742] RDatasets v0.6.6
[3cdcf5f2] RecipesBase v0.7.0
[189a3867] Reexport v0.2.0
[ae029012] Requires v0.5.2
[79098fc4] Rmath v0.6.0
[321657f4] ScientificTypes v0.5.1
[6e75b9c4] ScikitLearnBase v0.5.0
[a2af1166] SortingAlgorithms v0.3.1
[276daf66] SpecialFunctions v0.9.0
[90137ffa] StaticArrays v0.12.1
[2913bbd2] StatsBase v0.32.0
[4c63d2b9] StatsFuns v0.9.3
[3783bdb8] TableTraits v1.0.0
[bd369af6] Tables v0.2.11
[f269a46b] TimeZones v1.0.0
[3bb67fe8] TranscodingStreams v0.9.5
[b8865327] UnicodePlots v1.1.0
[ea10d353] WeakRefStrings v0.6.2
[02c8fc9c] XML2_jll v2.9.9+1
[83775a58] Zlib_jll v1.2.11+8
[2a0f44e3] Base64
[ade2ca70] Dates
[8bb1440f] DelimitedFiles
[8ba89e20] Distributed
[9fa8497b] Future
[b77e0a4c] InteractiveUtils
[76f85450] LibGit2
[8f399da3] Libdl
[37e2e46d] LinearAlgebra
[56ddb016] Logging
[d6f4376e] Markdown
[a63ad114] Mmap
[44cfe95a] Pkg
[de0858da] Printf
[3fa0cd96] REPL
[9a3f8284] Random
[ea8e919c] SHA
[9e88b42a] Serialization
[1a1011a3] SharedArrays
[6462fe0b] Sockets
[2f01184e] SparseArrays
[10745b16] Statistics
[4607b0f0] SuiteSparse
[8dfed614] Test
[cf7118a7] UUIDs
[4ec0a83e] Unicode
[ Info: Model metadata loaded from registry.
Test Summary: | Pass Total
utilities | 4 4
[ Info: Training [34mMachine{DeterministicTunedModel} @ 1…95[39m.
[ Info: Mimimizing rms.
Iterating over a 40-point grid: 2%[> ] ETA: 0:00:00[KIterating over a 40-point grid: 7%[=> ] ETA: 0:04:20[KIterating over a 40-point grid: 10%[==> ] ETA: 0:03:32[KIterating over a 40-point grid: 12%[===> ] ETA: 0:02:49[KIterating over a 40-point grid: 15%[===> ] ETA: 0:02:19[KIterating over a 40-point grid: 17%[====> ] ETA: 0:01:56[KIterating over a 40-point grid: 20%[====> ] ETA: 0:01:38[KIterating over a 40-point grid: 22%[=====> ] ETA: 0:01:25[KIterating over a 40-point grid: 24%[======> ] ETA: 0:01:14[KIterating over a 40-point grid: 27%[======> ] ETA: 0:01:05[KIterating over a 40-point grid: 29%[=======> ] ETA: 0:00:58[KIterating over a 40-point grid: 32%[=======> ] ETA: 0:00:51[KIterating over a 40-point grid: 34%[========> ] ETA: 0:00:46[KIterating over a 40-point grid: 37%[=========> ] ETA: 0:00:41[KIterating over a 40-point grid: 39%[=========> ] ETA: 0:00:37[KIterating over a 40-point grid: 41%[==========> ] ETA: 0:00:34[KIterating over a 40-point grid: 44%[==========> ] ETA: 0:00:30[KIterating over a 40-point grid: 46%[===========> ] ETA: 0:00:28[KIterating over a 40-point grid: 49%[============> ] ETA: 0:00:25[KIterating over a 40-point grid: 51%[============> ] ETA: 0:00:23[KIterating over a 40-point grid: 54%[=============> ] ETA: 0:00:21[KIterating over a 40-point grid: 56%[==============> ] ETA: 0:00:19[KIterating over a 40-point grid: 59%[==============> ] ETA: 0:00:17[KIterating over a 40-point grid: 61%[===============> ] ETA: 0:00:15[KIterating over a 40-point grid: 63%[===============> ] ETA: 0:00:14[KIterating over a 40-point grid: 66%[================> ] ETA: 0:00:12[KIterating over a 40-point grid: 68%[=================> ] ETA: 0:00:11[KIterating over a 40-point grid: 71%[=================> ] ETA: 0:00:10[KIterating over a 40-point grid: 73%[==================> ] ETA: 0:00:09[KIterating over a 40-point grid: 76%[==================> ] ETA: 0:00:08[KIterating over a 40-point grid: 78%[===================> ] ETA: 0:00:07[KIterating over a 40-point grid: 80%[====================> ] ETA: 0:00:06[KIterating over a 40-point grid: 83%[====================> ] ETA: 0:00:05[KIterating over a 40-point grid: 85%[=====================> ] ETA: 0:00:04[KIterating over a 40-point grid: 88%[=====================> ] ETA: 0:00:03[KIterating over a 40-point grid: 90%[======================> ] ETA: 0:00:03[KIterating over a 40-point grid: 93%[=======================> ] ETA: 0:00:02[KIterating over a 40-point grid: 95%[=======================> ] ETA: 0:00:01[KIterating over a 40-point grid: 98%[========================>] ETA: 0:00:01[KIterating over a 40-point grid: 100%[=========================] Time: 0:00:23[K
[ Info: Training best model on all supplied data.
[ Info: Updating [34mMachine{DeterministicTunedModel} @ 1…95[39m.
[ Info: Mimimizing rms.
Iterating over a 40-point grid: 2%[> ] ETA: 0:00:00[KIterating over a 40-point grid: 7%[=> ] ETA: 0:00:00[KIterating over a 40-point grid: 10%[==> ] ETA: 0:00:00[KIterating over a 40-point grid: 12%[===> ] ETA: 0:00:00[KIterating over a 40-point grid: 15%[===> ] ETA: 0:00:00[KIterating over a 40-point grid: 17%[====> ] ETA: 0:00:00[KIterating over a 40-point grid: 20%[====> ] ETA: 0:00:00[KIterating over a 40-point grid: 22%[=====> ] ETA: 0:00:00[KIterating over a 40-point grid: 24%[======> ] ETA: 0:00:00[KIterating over a 40-point grid: 27%[======> ] ETA: 0:00:00[KIterating over a 40-point grid: 29%[=======> ] ETA: 0:00:00[KIterating over a 40-point grid: 32%[=======> ] ETA: 0:00:00[KIterating over a 40-point grid: 34%[========> ] ETA: 0:00:00[KIterating over a 40-point grid: 37%[=========> ] ETA: 0:00:00[KIterating over a 40-point grid: 39%[=========> ] ETA: 0:00:00[KIterating over a 40-point grid: 41%[==========> ] ETA: 0:00:00[KIterating over a 40-point grid: 44%[==========> ] ETA: 0:00:00[KIterating over a 40-point grid: 46%[===========> ] ETA: 0:00:00[KIterating over a 40-point grid: 49%[============> ] ETA: 0:00:00[KIterating over a 40-point grid: 51%[============> ] ETA: 0:00:00[KIterating over a 40-point grid: 54%[=============> ] ETA: 0:00:00[KIterating over a 40-point grid: 56%[==============> ] ETA: 0:00:00[KIterating over a 40-point grid: 59%[==============> ] ETA: 0:00:00[KIterating over a 40-point grid: 61%[===============> ] ETA: 0:00:00[KIterating over a 40-point grid: 63%[===============> ] ETA: 0:00:00[KIterating over a 40-point grid: 66%[================> ] ETA: 0:00:00[KIterating over a 40-point grid: 68%[=================> ] ETA: 0:00:00[KIterating over a 40-point grid: 71%[=================> ] ETA: 0:00:00[KIterating over a 40-point grid: 73%[==================> ] ETA: 0:00:00[KIterating over a 40-point grid: 76%[==================> ] ETA: 0:00:00[KIterating over a 40-point grid: 78%[===================> ] ETA: 0:00:00[KIterating over a 40-point grid: 80%[====================> ] ETA: 0:00:00[KIterating over a 40-point grid: 83%[====================> ] ETA: 0:00:00[KIterating over a 40-point grid: 85%[=====================> ] ETA: 0:00:00[KIterating over a 40-point grid: 88%[=====================> ] ETA: 0:00:00[KIterating over a 40-point grid: 90%[======================> ] ETA: 0:00:00[KIterating over a 40-point grid: 93%[=======================> ] ETA: 0:00:00[KIterating over a 40-point grid: 95%[=======================> ] ETA: 0:00:00[KIterating over a 40-point grid: 98%[========================>] ETA: 0:00:00[KIterating over a 40-point grid: 100%[=========================] Time: 0:00:00[K
[ Info: Training best model on all supplied data.
[ Info: Updating [34mMachine{DeterministicTunedModel} @ 1…95[39m.
[ Info: Mimimizing rms.
Iterating over a 40-point grid: 2%[> ] ETA: 0:00:00[KIterating over a 40-point grid: 7%[=> ] ETA: 0:00:05[KIterating over a 40-point grid: 10%[==> ] ETA: 0:00:03[KIterating over a 40-point grid: 12%[===> ] ETA: 0:00:03[KIterating over a 40-point grid: 15%[===> ] ETA: 0:00:02[KIterating over a 40-point grid: 17%[====> ] ETA: 0:00:02[KIterating over a 40-point grid: 20%[====> ] ETA: 0:00:02[KIterating over a 40-point grid: 22%[=====> ] ETA: 0:00:01[KIterating over a 40-point grid: 24%[======> ] ETA: 0:00:01[KIterating over a 40-point grid: 27%[======> ] ETA: 0:00:01[KIterating over a 40-point grid: 29%[=======> ] ETA: 0:00:01[KIterating over a 40-point grid: 32%[=======> ] ETA: 0:00:01[KIterating over a 40-point grid: 34%[========> ] ETA: 0:00:01[KIterating over a 40-point grid: 37%[=========> ] ETA: 0:00:01[KIterating over a 40-point grid: 39%[=========> ] ETA: 0:00:01[KIterating over a 40-point grid: 41%[==========> ] ETA: 0:00:01[KIterating over a 40-point grid: 44%[==========> ] ETA: 0:00:00[KIterating over a 40-point grid: 46%[===========> ] ETA: 0:00:00[KIterating over a 40-point grid: 49%[============> ] ETA: 0:00:00[KIterating over a 40-point grid: 51%[============> ] ETA: 0:00:00[KIterating over a 40-point grid: 54%[=============> ] ETA: 0:00:00[KIterating over a 40-point grid: 56%[==============> ] ETA: 0:00:00[KIterating over a 40-point grid: 59%[==============> ] ETA: 0:00:00[KIterating over a 40-point grid: 61%[===============> ] ETA: 0:00:00[KIterating over a 40-point grid: 63%[===============> ] ETA: 0:00:00[KIterating over a 40-point grid: 66%[================> ] ETA: 0:00:00[KIterating over a 40-point grid: 68%[=================> ] ETA: 0:00:00[KIterating over a 40-point grid: 71%[=================> ] ETA: 0:00:00[KIterating over a 40-point grid: 73%[==================> ] ETA: 0:00:00[KIterating over a 40-point grid: 76%[==================> ] ETA: 0:00:00[KIterating over a 40-point grid: 78%[===================> ] ETA: 0:00:00[KIterating over a 40-point grid: 80%[====================> ] ETA: 0:00:00[KIterating over a 40-point grid: 83%[====================> ] ETA: 0:00:00[KIterating over a 40-point grid: 85%[=====================> ] ETA: 0:00:00[KIterating over a 40-point grid: 88%[=====================> ] ETA: 0:00:00[KIterating over a 40-point grid: 90%[======================> ] ETA: 0:00:00[KIterating over a 40-point grid: 93%[=======================> ] ETA: 0:00:00[KIterating over a 40-point grid: 95%[=======================> ] ETA: 0:00:00[KIterating over a 40-point grid: 98%[========================>] ETA: 0:00:00[KIterating over a 40-point grid: 100%[=========================] Time: 0:00:00[K
[ Info: Training best model on all supplied data.
┌ Info: A model type "KNNRegressor" is already loaded.
└ No new code loaded.
[ Info: Training [34mMachine{DeterministicTunedModel} @ 9…32[39m.
[ Info: Mimimizing rms.
Iterating over a 72-point grid: 1%[> ] ETA: 0:00:00[KIterating over a 72-point grid: 4%[=> ] ETA: 0:06:31[KIterating over a 72-point grid: 5%[=> ] ETA: 0:05:37[KIterating over a 72-point grid: 7%[=> ] ETA: 0:04:26[KIterating over a 72-point grid: 8%[==> ] ETA: 0:03:39[KIterating over a 72-point grid: 10%[==> ] ETA: 0:03:05[KIterating over a 72-point grid: 11%[==> ] ETA: 0:02:40[KIterating over a 72-point grid: 12%[===> ] ETA: 0:02:20[KIterating over a 72-point grid: 14%[===> ] ETA: 0:02:04[KIterating over a 72-point grid: 15%[===> ] ETA: 0:01:52[KIterating over a 72-point grid: 16%[====> ] ETA: 0:01:41[KIterating over a 72-point grid: 18%[====> ] ETA: 0:01:32[KIterating over a 72-point grid: 19%[====> ] ETA: 0:01:24[KIterating over a 72-point grid: 21%[=====> ] ETA: 0:01:17[KIterating over a 72-point grid: 22%[=====> ] ETA: 0:01:11[KIterating over a 72-point grid: 23%[=====> ] ETA: 0:01:06[KIterating over a 72-point grid: 25%[======> ] ETA: 0:01:01[KIterating over a 72-point grid: 26%[======> ] ETA: 0:00:57[KIterating over a 72-point grid: 27%[======> ] ETA: 0:00:53[KIterating over a 72-point grid: 29%[=======> ] ETA: 0:00:50[KIterating over a 72-point grid: 30%[=======> ] ETA: 0:00:47[KIterating over a 72-point grid: 32%[=======> ] ETA: 0:00:44[KIterating over a 72-point grid: 33%[========> ] ETA: 0:00:41[KIterating over a 72-point grid: 34%[========> ] ETA: 0:00:39[KIterating over a 72-point grid: 36%[========> ] ETA: 0:00:37[KIterating over a 72-point grid: 37%[=========> ] ETA: 0:00:35[KIterating over a 72-point grid: 38%[=========> ] ETA: 0:00:33[KIterating over a 72-point grid: 40%[=========> ] ETA: 0:00:31[KIterating over a 72-point grid: 41%[==========> ] ETA: 0:00:29[KIterating over a 72-point grid: 42%[==========> ] ETA: 0:00:28[KIterating over a 72-point grid: 44%[==========> ] ETA: 0:00:26[KIterating over a 72-point grid: 45%[===========> ] ETA: 0:00:25[KIterating over a 72-point grid: 47%[===========> ] ETA: 0:00:24[KIterating over a 72-point grid: 48%[===========> ] ETA: 0:00:22[KIterating over a 72-point grid: 49%[============> ] ETA: 0:00:21[KIterating over a 72-point grid: 51%[============> ] ETA: 0:00:20[KIterating over a 72-point grid: 52%[=============> ] ETA: 0:00:19[KIterating over a 72-point grid: 53%[=============> ] ETA: 0:00:18[KIterating over a 72-point grid: 55%[=============> ] ETA: 0:00:17[KIterating over a 72-point grid: 56%[==============> ] ETA: 0:00:16[KIterating over a 72-point grid: 58%[==============> ] ETA: 0:00:15[KIterating over a 72-point grid: 59%[==============> ] ETA: 0:00:15[KIterating over a 72-point grid: 60%[===============> ] ETA: 0:00:14[KIterating over a 72-point grid: 62%[===============> ] ETA: 0:00:13[KIterating over a 72-point grid: 63%[===============> ] ETA: 0:00:12[KIterating over a 72-point grid: 64%[================> ] ETA: 0:00:12[KIterating over a 72-point grid: 66%[================> ] ETA: 0:00:11[KIterating over a 72-point grid: 67%[================> ] ETA: 0:00:10[KIterating over a 72-point grid: 68%[=================> ] ETA: 0:00:10[KIterating over a 72-point grid: 70%[=================> ] ETA: 0:00:09[KIterating over a 72-point grid: 71%[=================> ] ETA: 0:00:09[KIterating over a 72-point grid: 73%[==================> ] ETA: 0:00:08[KIterating over a 72-point grid: 74%[==================> ] ETA: 0:00:08[KIterating over a 72-point grid: 75%[==================> ] ETA: 0:00:07[KIterating over a 72-point grid: 77%[===================> ] ETA: 0:00:07[KIterating over a 72-point grid: 78%[===================> ] ETA: 0:00:06[KIterating over a 72-point grid: 79%[===================> ] ETA: 0:00:06[KIterating over a 72-point grid: 81%[====================> ] ETA: 0:00:05[KIterating over a 72-point grid: 82%[====================> ] ETA: 0:00:05[KIterating over a 72-point grid: 84%[====================> ] ETA: 0:00:04[KIterating over a 72-point grid: 85%[=====================> ] ETA: 0:00:04[KIterating over a 72-point grid: 86%[=====================> ] ETA: 0:00:04[KIterating over a 72-point grid: 88%[=====================> ] ETA: 0:00:03[KIterating over a 72-point grid: 89%[======================> ] ETA: 0:00:03[KIterating over a 72-point grid: 90%[======================> ] ETA: 0:00:02[KIterating over a 72-point grid: 92%[======================> ] ETA: 0:00:02[KIterating over a 72-point grid: 93%[=======================> ] ETA: 0:00:02[KIterating over a 72-point grid: 95%[=======================> ] ETA: 0:00:01[KIterating over a 72-point grid: 96%[=======================> ] ETA: 0:00:01[KIterating over a 72-point grid: 97%[========================>] ETA: 0:00:01[KIterating over a 72-point grid: 99%[========================>] ETA: 0:00:00[KIterating over a 72-point grid: 100%[=========================] Time: 0:00:22[K
[ Info: Training best model on all supplied data.
[ Info: Updating [34mMachine{DeterministicTunedModel} @ 9…32[39m.
[ Info: Mimimizing rms.
Iterating over a 56-point grid: 2%[> ] ETA: 0:00:00[KIterating over a 56-point grid: 5%[=> ] ETA: 0:00:01[KIterating over a 56-point grid: 7%[=> ] ETA: 0:00:01[KIterating over a 56-point grid: 9%[==> ] ETA: 0:00:01[KIterating over a 56-point grid: 11%[==> ] ETA: 0:00:01[KIterating over a 56-point grid: 12%[===> ] ETA: 0:00:01[KIterating over a 56-point grid: 14%[===> ] ETA: 0:00:01[KIterating over a 56-point grid: 16%[===> ] ETA: 0:00:01[KIterating over a 56-point grid: 18%[====> ] ETA: 0:00:01[KIterating over a 56-point grid: 19%[====> ] ETA: 0:00:01[KIterating over a 56-point grid: 21%[=====> ] ETA: 0:00:01[KIterating over a 56-point grid: 23%[=====> ] ETA: 0:00:01[KIterating over a 56-point grid: 25%[======> ] ETA: 0:00:01[KIterating over a 56-point grid: 26%[======> ] ETA: 0:00:01[KIterating over a 56-point grid: 28%[=======> ] ETA: 0:00:01[KIterating over a 56-point grid: 30%[=======> ] ETA: 0:00:01[KIterating over a 56-point grid: 32%[=======> ] ETA: 0:00:01[KIterating over a 56-point grid: 33%[========> ] ETA: 0:00:01[KIterating over a 56-point grid: 35%[========> ] ETA: 0:00:01[KIterating over a 56-point grid: 37%[=========> ] ETA: 0:00:01[KIterating over a 56-point grid: 39%[=========> ] ETA: 0:00:01[KIterating over a 56-point grid: 40%[==========> ] ETA: 0:00:01[KIterating over a 56-point grid: 42%[==========> ] ETA: 0:00:01[KIterating over a 56-point grid: 44%[==========> ] ETA: 0:00:01[KIterating over a 56-point grid: 46%[===========> ] ETA: 0:00:01[KIterating over a 56-point grid: 47%[===========> ] ETA: 0:00:01[KIterating over a 56-point grid: 49%[============> ] ETA: 0:00:01[KIterating over a 56-point grid: 51%[============> ] ETA: 0:00:01[KIterating over a 56-point grid: 53%[=============> ] ETA: 0:00:01[KIterating over a 56-point grid: 54%[=============> ] ETA: 0:00:01[KIterating over a 56-point grid: 56%[==============> ] ETA: 0:00:01[KIterating over a 56-point grid: 58%[==============> ] ETA: 0:00:01[KIterating over a 56-point grid: 60%[==============> ] ETA: 0:00:01[KIterating over a 56-point grid: 61%[===============> ] ETA: 0:00:01[KIterating over a 56-point grid: 63%[===============> ] ETA: 0:00:01[KIterating over a 56-point grid: 65%[================> ] ETA: 0:00:01[KIterating over a 56-point grid: 67%[================> ] ETA: 0:00:01[KIterating over a 56-point grid: 68%[=================> ] ETA: 0:00:01[KIterating over a 56-point grid: 70%[=================> ] ETA: 0:00:01[KIterating over a 56-point grid: 72%[=================> ] ETA: 0:00:01[KIterating over a 56-point grid: 74%[==================> ] ETA: 0:00:01[KIterating over a 56-point grid: 75%[==================> ] ETA: 0:00:01[KIterating over a 56-point grid: 77%[===================> ] ETA: 0:00:00[KIterating over a 56-point grid: 79%[===================> ] ETA: 0:00:00[KIterating over a 56-point grid: 81%[====================> ] ETA: 0:00:00[KIterating over a 56-point grid: 82%[====================> ] ETA: 0:00:00[KIterating over a 56-point grid: 84%[=====================> ] ETA: 0:00:00[KIterating over a 56-point grid: 86%[=====================> ] ETA: 0:00:00[KIterating over a 56-point grid: 88%[=====================> ] ETA: 0:00:00[KIterating over a 56-point grid: 89%[======================> ] ETA: 0:00:00[KIterating over a 56-point grid: 91%[======================> ] ETA: 0:00:00[KIterating over a 56-point grid: 93%[=======================> ] ETA: 0:00:00[KIterating over a 56-point grid: 95%[=======================> ] ETA: 0:00:00[KIterating over a 56-point grid: 96%[========================>] ETA: 0:00:00[KIterating over a 56-point grid: 98%[========================>] ETA: 0:00:00[KIterating over a 56-point grid: 100%[=========================] Time: 0:00:02[K
[ Info: Training best model on all supplied data.
[ Info: Updating [34mMachine{DeterministicTunedModel} @ 9…32[39m.
┌ Warning: No resolution specified for forest.bagging_fraction. Will use a value of 5.
└ @ MLJ ~/.julia/packages/MLJ/YWvn8/src/tuning.jl:202
[ Info: Mimimizing rms.
Iterating over a 60-point grid: 2%[> ] ETA: 0:00:00[KIterating over a 60-point grid: 5%[=> ] ETA: 0:00:01[KIterating over a 60-point grid: 7%[=> ] ETA: 0:00:01[KIterating over a 60-point grid: 8%[==> ] ETA: 0:00:01[KIterating over a 60-point grid: 10%[==> ] ETA: 0:00:01[KIterating over a 60-point grid: 11%[==> ] ETA: 0:00:01[KIterating over a 60-point grid: 13%[===> ] ETA: 0:00:01[KIterating over a 60-point grid: 15%[===> ] ETA: 0:00:01[KIterating over a 60-point grid: 16%[====> ] ETA: 0:00:01[KIterating over a 60-point grid: 18%[====> ] ETA: 0:00:02[KIterating over a 60-point grid: 20%[====> ] ETA: 0:00:02[KIterating over a 60-point grid: 21%[=====> ] ETA: 0:00:02[KIterating over a 60-point grid: 23%[=====> ] ETA: 0:00:02[KIterating over a 60-point grid: 25%[======> ] ETA: 0:00:02[KIterating over a 60-point grid: 26%[======> ] ETA: 0:00:01[KIterating over a 60-point grid: 28%[======> ] ETA: 0:00:01[KIterating over a 60-point grid: 30%[=======> ] ETA: 0:00:01[KIterating over a 60-point grid: 31%[=======> ] ETA: 0:00:01[KIterating over a 60-point grid: 33%[========> ] ETA: 0:00:01[KIterating over a 60-point grid: 34%[========> ] ETA: 0:00:01[KIterating over a 60-point grid: 36%[=========> ] ETA: 0:00:01[KIterating over a 60-point grid: 38%[=========> ] ETA: 0:00:01[KIterating over a 60-point grid: 39%[=========> ] ETA: 0:00:01[KIterating over a 60-point grid: 41%[==========> ] ETA: 0:00:01[KIterating over a 60-point grid: 43%[==========> ] ETA: 0:00:01[KIterating over a 60-point grid: 44%[===========> ] ETA: 0:00:01[KIterating over a 60-point grid: 46%[===========> ] ETA: 0:00:01[KIterating over a 60-point grid: 48%[===========> ] ETA: 0:00:01[KIterating over a 60-point grid: 49%[============> ] ETA: 0:00:01[KIterating over a 60-point grid: 51%[============> ] ETA: 0:00:01[KIterating over a 60-point grid: 52%[=============> ] ETA: 0:00:01[KIterating over a 60-point grid: 54%[=============> ] ETA: 0:00:01[KIterating over a 60-point grid: 56%[=============> ] ETA: 0:00:01[KIterating over a 60-point grid: 57%[==============> ] ETA: 0:00:01[KIterating over a 60-point grid: 59%[==============> ] ETA: 0:00:01[KIterating over a 60-point grid: 61%[===============> ] ETA: 0:00:01[KIterating over a 60-point grid: 62%[===============> ] ETA: 0:00:01[KIterating over a 60-point grid: 64%[===============> ] ETA: 0:00:01[KIterating over a 60-point grid: 66%[================> ] ETA: 0:00:01[KIterating over a 60-point grid: 67%[================> ] ETA: 0:00:01[KIterating over a 60-point grid: 69%[=================> ] ETA: 0:00:01[KIterating over a 60-point grid: 70%[=================> ] ETA: 0:00:01[KIterating over a 60-point grid: 72%[==================> ] ETA: 0:00:01[KIterating over a 60-point grid: 74%[==================> ] ETA: 0:00:01[KIterating over a 60-point grid: 75%[==================> ] ETA: 0:00:01[KIterating over a 60-point grid: 77%[===================> ] ETA: 0:00:01[KIterating over a 60-point grid: 79%[===================> ] ETA: 0:00:01[KIterating over a 60-point grid: 80%[====================> ] ETA: 0:00:00[KIterating over a 60-point grid: 82%[====================> ] ETA: 0:00:00[KIterating over a 60-point grid: 84%[====================> ] ETA: 0:00:00[KIterating over a 60-point grid: 85%[=====================> ] ETA: 0:00:00[KIterating over a 60-point grid: 87%[=====================> ] ETA: 0:00:00[KIterating over a 60-point grid: 89%[======================> ] ETA: 0:00:00[KIterating over a 60-point grid: 90%[======================> ] ETA: 0:00:00[KIterating over a 60-point grid: 92%[======================> ] ETA: 0:00:00[KIterating over a 60-point grid: 93%[=======================> ] ETA: 0:00:00[KIterating over a 60-point grid: 95%[=======================> ] ETA: 0:00:00[KIterating over a 60-point grid: 97%[========================>] ETA: 0:00:00[KIterating over a 60-point grid: 98%[========================>] ETA: 0:00:00[KIterating over a 60-point grid: 100%[=========================] Time: 0:00:02[K
[ Info: Training best model on all supplied data.
┌ Warning: No measure specified. Setting measure=rms.
└ @ MLJBase ~/.julia/packages/MLJBase/t7MaX/src/machines.jl:155
[ Info: Training [34mMachine{DeterministicTunedModel} @ 1…46[39m.
[ Info: Mimimizing rms.
Iterating over a 10-point grid: 9%[==> ] ETA: 0:00:00[KIterating over a 10-point grid: 27%[======> ] ETA: 0:00:04[KIterating over a 10-point grid: 36%[=========> ] ETA: 0:00:03[KIterating over a 10-point grid: 45%[===========> ] ETA: 0:00:02[KIterating over a 10-point grid: 55%[=============> ] ETA: 0:00:01[KIterating over a 10-point grid: 64%[===============> ] ETA: 0:00:01[KIterating over a 10-point grid: 73%[==================> ] ETA: 0:00:01[KIterating over a 10-point grid: 82%[====================> ] ETA: 0:00:00[KIterating over a 10-point grid: 91%[======================> ] ETA: 0:00:00[KIterating over a 10-point grid: 100%[=========================] Time: 0:00:01[K
[ Info: Training best model on all supplied data.
[ Info: Training [34mMachine{DeterministicTunedModel} @ 1…08[39m.
[ Info: Mimimizing rms.
atom.K=3 bagging_fraction=0.4 measurement=0.2973770670340338
atom.K=4 bagging_fraction=0.4 measurement=0.29487431347616055
atom.K=3 bagging_fraction=0.7 measurement=0.3053084971552806
atom.K=4 bagging_fraction=0.7 measurement=0.3007352876810562
atom.K=3 bagging_fraction=1.0 measurement=0.322315125056536
atom.K=4 bagging_fraction=1.0 measurement=0.31259942522260187
[ Info: Training best model on all supplied data.
[ Info: Training [34mMachine{DeterministicEnsembleModel{KNNRegressor}} @ 7…70[39m.
[ Info: Training [34mMachine{ProbabilisticTunedModel} @ 5…24[39m.
[ Info: Maximizing BrierScore(UnivariateFinite).
Iterating over a 10-point grid: 9%[==> ] ETA: 0:00:00[KIterating over a 10-point grid: 27%[======> ] ETA: 0:00:23[KIterating over a 10-point grid: 36%[=========> ] ETA: 0:00:15[KIterating over a 10-point grid: 45%[===========> ] ETA: 0:00:11[KIterating over a 10-point grid: 55%[=============> ] ETA: 0:00:07[KIterating over a 10-point grid: 64%[===============> ] ETA: 0:00:05[KIterating over a 10-point grid: 73%[==================> ] ETA: 0:00:03[KIterating over a 10-point grid: 82%[====================> ] ETA: 0:00:02[KIterating over a 10-point grid: 91%[======================> ] ETA: 0:00:01[KIterating over a 10-point grid: 100%[=========================] Time: 0:00:09[K
[ Info: Training best model on all supplied data.
[ Info: Training [34mMachine{ProbabilisticTunedModel} @ 4…07[39m.
[ Info: Maximizing BrierScore(UnivariateFinite).
Iterating over a 10-point grid: 9%[==> ] ETA: 0:00:00[KIterating over a 10-point grid: 27%[======> ] ETA: 0:00:03[KIterating over a 10-point grid: 36%[=========> ] ETA: 0:00:02[KIterating over a 10-point grid: 45%[===========> ] ETA: 0:00:01[KIterating over a 10-point grid: 55%[=============> ] ETA: 0:00:01[KIterating over a 10-point grid: 64%[===============> ] ETA: 0:00:01[KIterating over a 10-point grid: 73%[==================> ] ETA: 0:00:00[KIterating over a 10-point grid: 82%[====================> ] ETA: 0:00:00[KIterating over a 10-point grid: 91%[======================> ] ETA: 0:00:00[KIterating over a 10-point grid: 100%[=========================] Time: 0:00:01[K
[ Info: Training best model on all supplied data.
[ Info: Training [34mMachine{ProbabilisticTunedModel} @ 1…34[39m.
[ Info: Maximizing BrierScore(UnivariateFinite).
Iterating over a 10-point grid: 9%[==> ] ETA: 0:00:00[KIterating over a 10-point grid: 27%[======> ] ETA: 0:00:00[KIterating over a 10-point grid: 36%[=========> ] ETA: 0:00:00[KIterating over a 10-point grid: 45%[===========> ] ETA: 0:00:00[KIterating over a 10-point grid: 55%[=============> ] ETA: 0:00:00[KIterating over a 10-point grid: 64%[===============> ] ETA: 0:00:00[KIterating over a 10-point grid: 73%[==================> ] ETA: 0:00:00[KIterating over a 10-point grid: 82%[====================> ] ETA: 0:00:00[KIterating over a 10-point grid: 91%[======================> ] ETA: 0:00:00[KIterating over a 10-point grid: 100%[=========================] Time: 0:00:00[K
[ Info: Training best model on all supplied data.
[ Info: No measure specified. Using measure=rms.
[ Info: Training [34mMachine{DeterministicTunedModel} @ 5…11[39m.
Iterating over a 30-point grid: 3%[> ] ETA: 0:00:00[KIterating over a 30-point grid: 10%[==> ] ETA: 0:00:26[KIterating over a 30-point grid: 13%[===> ] ETA: 0:00:23[KIterating over a 30-point grid: 16%[====> ] ETA: 0:00:18[KIterating over a 30-point grid: 19%[====> ] ETA: 0:00:14[KIterating over a 30-point grid: 23%[=====> ] ETA: 0:00:12[KIterating over a 30-point grid: 26%[======> ] ETA: 0:00:10[KIterating over a 30-point grid: 29%[=======> ] ETA: 0:00:08[KIterating over a 30-point grid: 32%[========> ] ETA: 0:00:07[KIterating over a 30-point grid: 35%[========> ] ETA: 0:00:06[KIterating over a 30-point grid: 39%[=========> ] ETA: 0:00:05[KIterating over a 30-point grid: 42%[==========> ] ETA: 0:00:05[KIterating over a 30-point grid: 45%[===========> ] ETA: 0:00:04[KIterating over a 30-point grid: 48%[============> ] ETA: 0:00:04[KIterating over a 30-point grid: 52%[============> ] ETA: 0:00:03[KIterating over a 30-point grid: 55%[=============> ] ETA: 0:00:03[KIterating over a 30-point grid: 58%[==============> ] ETA: 0:00:03[KIterating over a 30-point grid: 61%[===============> ] ETA: 0:00:02[KIterating over a 30-point grid: 65%[================> ] ETA: 0:00:02[KIterating over a 30-point grid: 68%[================> ] ETA: 0:00:02[KIterating over a 30-point grid: 71%[=================> ] ETA: 0:00:01[KIterating over a 30-point grid: 74%[==================> ] ETA: 0:00:01[KIterating over a 30-point grid: 77%[===================> ] ETA: 0:00:01[KIterating over a 30-point grid: 81%[====================> ] ETA: 0:00:01[KIterating over a 30-point grid: 84%[====================> ] ETA: 0:00:01[KIterating over a 30-point grid: 87%[=====================> ] ETA: 0:00:01[KIterating over a 30-point grid: 90%[======================> ] ETA: 0:00:00[KIterating over a 30-point grid: 94%[=======================> ] ETA: 0:00:00[KIterating over a 30-point grid: 97%[========================>] ETA: 0:00:00[KIterating over a 30-point grid: 100%[=========================] Time: 0:00:03[K
┌ Info: Training of best model suppressed.
└ To train tuning machine `mach` on all supplied data, call `fit!(mach.fitresult)`.
[ Info: No measure specified. Using measure=rms.
[ Info: Training [34mMachine{DeterministicTunedModel} @ 2…86[39m.
Iterating over a 30-point grid: 3%[> ] ETA: 0:00:00[KIterating over a 30-point grid: 10%[==> ] ETA: 0:00:00[KIterating over a 30-point grid: 13%[===> ] ETA: 0:00:00[KIterating over a 30-point grid: 16%[====> ] ETA: 0:00:00[KIterating over a 30-point grid: 19%[====> ] ETA: 0:00:00[KIterating over a 30-point grid: 23%[=====> ] ETA: 0:00:00[KIterating over a 30-point grid: 26%[======> ] ETA: 0:00:00[KIterating over a 30-point grid: 29%[=======> ] ETA: 0:00:00[KIterating over a 30-point grid: 32%[========> ] ETA: 0:00:00[KIterating over a 30-point grid: 35%[========> ] ETA: 0:00:00[KIterating over a 30-point grid: 39%[=========> ] ETA: 0:00:00[KIterating over a 30-point grid: 42%[==========> ] ETA: 0:00:00[KIterating over a 30-point grid: 45%[===========> ] ETA: 0:00:00[KIterating over a 30-point grid: 48%[============> ] ETA: 0:00:00[KIterating over a 30-point grid: 52%[============> ] ETA: 0:00:00[KIterating over a 30-point grid: 55%[=============> ] ETA: 0:00:00[KIterating over a 30-point grid: 58%[==============> ] ETA: 0:00:00[KIterating over a 30-point grid: 61%[===============> ] ETA: 0:00:00[KIterating over a 30-point grid: 65%[================> ] ETA: 0:00:00[KIterating over a 30-point grid: 68%[================> ] ETA: 0:00:00[KIterating over a 30-point grid: 71%[=================> ] ETA: 0:00:00[KIterating over a 30-point grid: 74%[==================> ] ETA: 0:00:00[KIterating over a 30-point grid: 77%[===================> ] ETA: 0:00:00[KIterating over a 30-point grid: 81%[====================> ] ETA: 0:00:00[KIterating over a 30-point grid: 84%[====================> ] ETA: 0:00:00[KIterating over a 30-point grid: 87%[=====================> ] ETA: 0:00:00[KIterating over a 30-point grid: 90%[======================> ] ETA: 0:00:00[KIterating over a 30-point grid: 94%[=======================> ] ETA: 0:00:00[KIterating over a 30-point grid: 97%[========================>] ETA: 0:00:00[KIterating over a 30-point grid: 100%[=========================] Time: 0:00:00[K
┌ Info: Training of best model suppressed.
└ To train tuning machine `mach` on all supplied data, call `fit!(mach.fitresult)`.
[ Info: No measure specified. Using measure=rms.
[ Info: Training [34mMachine{DeterministicTunedModel} @ 1…24[39m.
Iterating over a 30-point grid: 3%[> ] ETA: 0:00:00[KIterating over a 30-point grid: 10%[==> ] ETA: 0:00:00[KIterating over a 30-point grid: 13%[===> ] ETA: 0:00:00[KIterating over a 30-point grid: 16%[====> ] ETA: 0:00:00[KIterating over a 30-point grid: 19%[====> ] ETA: 0:00:00[KIterating over a 30-point grid: 23%[=====> ] ETA: 0:00:00[KIterating over a 30-point grid: 26%[======> ] ETA: 0:00:00[KIterating over a 30-point grid: 29%[=======> ] ETA: 0:00:00[KIterating over a 30-point grid: 32%[========> ] ETA: 0:00:00[KIterating over a 30-point grid: 35%[========> ] ETA: 0:00:00[KIterating over a 30-point grid: 39%[=========> ] ETA: 0:00:00[KIterating over a 30-point grid: 42%[==========> ] ETA: 0:00:00[KIterating over a 30-point grid: 45%[===========> ] ETA: 0:00:00[KIterating over a 30-point grid: 48%[============> ] ETA: 0:00:00[KIterating over a 30-point grid: 52%[============> ] ETA: 0:00:00[KIterating over a 30-point grid: 55%[=============> ] ETA: 0:00:00[KIterating over a 30-point grid: 58%[==============> ] ETA: 0:00:00[KIterating over a 30-point grid: 61%[===============> ] ETA: 0:00:00[KIterating over a 30-point grid: 65%[================> ] ETA: 0:00:00[KIterating over a 30-point grid: 68%[================> ] ETA: 0:00:00[KIterating over a 30-point grid: 71%[=================> ] ETA: 0:00:00[KIterating over a 30-point grid: 74%[==================> ] ETA: 0:00:00[KIterating over a 30-point grid: 77%[===================> ] ETA: 0:00:00[KIterating over a 30-point grid: 81%[====================> ] ETA: 0:00:00[KIterating over a 30-point grid: 84%[====================> ] ETA: 0:00:00[KIterating over a 30-point grid: 87%[=====================> ] ETA: 0:00:00[KIterating over a 30-point grid: 90%[======================> ] ETA: 0:00:00[KIterating over a 30-point grid: 94%[=======================> ] ETA: 0:00:00[KIterating over a 30-point grid: 97%[========================>] ETA: 0:00:00[KIterating over a 30-point grid: 100%[=========================] Time: 0:00:00[K
┌ Info: Training of best model suppressed.
└ To train tuning machine `mach` on all supplied data, call `fit!(mach.fitresult)`.
Test Summary: | Pass Total
tuning | 19 19
Iterating over a 30-point grid: 3%[> ] ETA: 0:00:00[KIterating over a 30-point grid: 10%[==> ] ETA: 0:00:24[KIterating over a 30-point grid: 13%[===> ] ETA: 0:00:22[KIterating over a 30-point grid: 16%[====> ] ETA: 0:00:17[KIterating over a 30-point grid: 19%[====> ] ETA: 0:00:13[KIterating over a 30-point grid: 23%[=====> ] ETA: 0:00:11[KIterating over a 30-point grid: 26%[======> ] ETA: 0:00:09[KIterating over a 30-point grid: 29%[=======> ] ETA: 0:00:08[KIterating over a 30-point grid: 32%[========> ] ETA: 0:00:07[KIterating over a 30-point grid: 35%[========> ] ETA: 0:00:06[KIterating over a 30-point grid: 39%[=========> ] ETA: 0:00:05[KIterating over a 30-point grid: 42%[==========> ] ETA: 0:00:05[KIterating over a 30-point grid: 45%[===========> ] ETA: 0:00:04[KIterating over a 30-point grid: 48%[============> ] ETA: 0:00:04[KIterating over a 30-point grid: 52%[============> ] ETA: 0:00:03[KIterating over a 30-point grid: 55%[=============> ] ETA: 0:00:03[KIterating over a 30-point grid: 58%[==============> ] ETA: 0:00:02[KIterating over a 30-point grid: 61%[===============> ] ETA: 0:00:02[KIterating over a 30-point grid: 65%[================> ] ETA: 0:00:02[KIterating over a 30-point grid: 68%[================> ] ETA: 0:00:02[KIterating over a 30-point grid: 71%[=================> ] ETA: 0:00:01[KIterating over a 30-point grid: 74%[==================> ] ETA: 0:00:01[KIterating over a 30-point grid: 77%[===================> ] ETA: 0:00:01[KIterating over a 30-point grid: 81%[====================> ] ETA: 0:00:01[KIterating over a 30-point grid: 84%[====================> ] ETA: 0:00:01[KIterating over a 30-point grid: 87%[=====================> ] ETA: 0:00:01[KIterating over a 30-point grid: 90%[======================> ] ETA: 0:00:00[KIterating over a 30-point grid: 94%[=======================> ] ETA: 0:00:00[KIterating over a 30-point grid: 97%[========================>] ETA: 0:00:00[KIterating over a 30-point grid: 100%[=========================] Time: 0:00:03[K
[ Info: No measure specified. Using measure=rms.
[ Info: Training [34mMachine{DeterministicTunedModel} @ 7…63[39m.
Iterating over a 30-point grid: 3%[> ] ETA: 0:00:00[KIterating over a 30-point grid: 10%[==> ] ETA: 0:00:00[KIterating over a 30-point grid: 13%[===> ] ETA: 0:00:00[KIterating over a 30-point grid: 16%[====> ] ETA: 0:00:00[KIterating over a 30-point grid: 19%[====> ] ETA: 0:00:00[KIterating over a 30-point grid: 23%[=====> ] ETA: 0:00:00[KIterating over a 30-point grid: 26%[======> ] ETA: 0:00:00[KIterating over a 30-point grid: 29%[=======> ] ETA: 0:00:00[KIterating over a 30-point grid: 32%[========> ] ETA: 0:00:00[KIterating over a 30-point grid: 35%[========> ] ETA: 0:00:00[KIterating over a 30-point grid: 39%[=========> ] ETA: 0:00:00[KIterating over a 30-point grid: 42%[==========> ] ETA: 0:00:00[KIterating over a 30-point grid: 45%[===========> ] ETA: 0:00:00[KIterating over a 30-point grid: 48%[============> ] ETA: 0:00:00[KIterating over a 30-point grid: 52%[============> ] ETA: 0:00:00[KIterating over a 30-point grid: 55%[=============> ] ETA: 0:00:00[KIterating over a 30-point grid: 58%[==============> ] ETA: 0:00:00[KIterating over a 30-point grid: 61%[===============> ] ETA: 0:00:00[KIterating over a 30-point grid: 65%[================> ] ETA: 0:00:00[KIterating over a 30-point grid: 68%[================> ] ETA: 0:00:00[KIterating over a 30-point grid: 71%[=================> ] ETA: 0:00:00[KIterating over a 30-point grid: 74%[==================> ] ETA: 0:00:00[KIterating over a 30-point grid: 77%[===================> ] ETA: 0:00:00[KIterating over a 30-point grid: 81%[====================> ] ETA: 0:00:00[KIterating over a 30-point grid: 84%[====================> ] ETA: 0:00:00[KIterating over a 30-point grid: 87%[=====================> ] ETA: 0:00:00[KIterating over a 30-point grid: 90%[======================> ] ETA: 0:00:00[KIterating over a 30-point grid: 94%[=======================> ] ETA: 0:00:00[KIterating over a 30-point grid: 97%[========================>] ETA: 0:00:00[KIterating over a 30-point grid: 100%[=========================] Time: 0:00:00[K
┌ Info: Training of best model suppressed.
└ To train tuning machine `mach` on all supplied data, call `fit!(mach.fitresult)`.
[ Info: No measure specified. Using measure=rms.
[ Info: Training [34mMachine{DeterministicTunedModel} @ 8…82[39m.
Iterating over a 30-point grid: 3%[> ] ETA: 0:00:00[KIterating over a 30-point grid: 10%[==> ] ETA: 0:00:00[KIterating over a 30-point grid: 13%[===> ] ETA: 0:00:00[KIterating over a 30-point grid: 16%[====> ] ETA: 0:00:00[KIterating over a 30-point grid: 19%[====> ] ETA: 0:00:00[KIterating over a 30-point grid: 23%[=====> ] ETA: 0:00:00[KIterating over a 30-point grid: 26%[======> ] ETA: 0:00:00[KIterating over a 30-point grid: 29%[=======> ] ETA: 0:00:00[KIterating over a 30-point grid: 32%[========> ] ETA: 0:00:00[KIterating over a 30-point grid: 35%[========> ] ETA: 0:00:00[KIterating over a 30-point grid: 39%[=========> ] ETA: 0:00:00[KIterating over a 30-point grid: 42%[==========> ] ETA: 0:00:00[KIterating over a 30-point grid: 45%[===========> ] ETA: 0:00:00[KIterating over a 30-point grid: 48%[============> ] ETA: 0:00:00[KIterating over a 30-point grid: 52%[============> ] ETA: 0:00:00[KIterating over a 30-point grid: 55%[=============> ] ETA: 0:00:00[KIterating over a 30-point grid: 58%[==============> ] ETA: 0:00:00[KIterating over a 30-point grid: 61%[===============> ] ETA: 0:00:00[KIterating over a 30-point grid: 65%[================> ] ETA: 0:00:00[KIterating over a 30-point grid: 68%[================> ] ETA: 0:00:00[KIterating over a 30-point grid: 71%[=================> ] ETA: 0:00:00[KIterating over a 30-point grid: 74%[==================> ] ETA: 0:00:00[KIterating over a 30-point grid: 77%[===================> ] ETA: 0:00:00[KIterating over a 30-point grid: 81%[====================> ] ETA: 0:00:00[KIterating over a 30-point grid: 84%[====================> ] ETA: 0:00:00[KIterating over a 30-point grid: 87%[=====================> ] ETA: 0:00:00[KIterating over a 30-point grid: 90%[======================> ] ETA: 0:00:00[KIterating over a 30-point grid: 94%[=======================> ] ETA: 0:00:00[KIterating over a 30-point grid: 97%[========================>] ETA: 0:00:00[KIterating over a 30-point grid: 100%[=========================] Time: 0:00:00[K
┌ Info: Training of best model suppressed.
└ To train tuning machine `mach` on all supplied data, call `fit!(mach.fitresult)`.
Test Summary: | Pass Total
learning_curves | 3 3
Training ensemble: 20%[==========> ] ETA: 0:00:03[KTraining ensemble: 100%[==================================================] Time: 0:00:00[K
Training ensemble: 20%[==========> ] ETA: 0:00:04[KTraining ensemble: 100%[==================================================] Time: 0:00:01[K
Training ensemble: 20%[==========> ] ETA: 0:00:05[KTraining ensemble: 100%[==================================================] Time: 0:00:01[K
[ Info: Training [34mMachine{DeterministicEnsembleModel{KNNRegressor}} @ 9…71[39m.
Training ensemble: 2%[=> ] ETA: 0:00:40[KTraining ensemble: 100%[==================================================] Time: 0:00:00[K
Test Summary: | Pass Total
ensembles | 43 43
Test Summary: | Pass Total
matching models to data | 11 11
┌ Warning: SupervisedTask is deprecated. For model search options, see https://alan-turing-institute.github.io/MLJ.jl/dev/model_search/
└ @ MLJBase ~/.julia/packages/MLJBase/t7MaX/src/tasks.jl:103
┌ Info:
│ is_probabilistic = true
│ input_scitype = ScientificTypes.Table{Union{AbstractArray{Count,1}, AbstractArray{Unknown,1}}}
└ target_scitype = AbstractArray{Count,1}
┌ Warning: Trying to coerce from `Union{Missing, Float64}` to `Count`.
│ Coerced to `Union{Missing,Count}` instead.
└ @ ScientificTypes ~/.julia/packages/ScientificTypes/Oy5C1/src/conventions/mlj/utils.jl:39
┌ Warning: SupervisedTask is deprecated. For model search options, see https://alan-turing-institute.github.io/MLJ.jl/dev/model_search/
└ @ MLJBase ~/.julia/packages/MLJBase/t7MaX/src/tasks.jl:103
┌ Info:
│ is_probabilistic = false
│ input_scitype = ScientificTypes.Table{Union{AbstractArray{Continuous,1}, AbstractArray{Multiclass{4},1}, AbstractArray{Union{Missing, Count},1}}}
└ target_scitype = AbstractArray{Count,1}
┌ Warning: SupervisedTask is deprecated. For model search options, see https://alan-turing-institute.github.io/MLJ.jl/dev/model_search/
└ @ MLJBase ~/.julia/packages/MLJBase/t7MaX/src/tasks.jl:103
┌ Info:
│ is_probabilistic = true
│ input_scitype = ScientificTypes.Table{Union{AbstractArray{Continuous,1}, AbstractArray{Multiclass{4},1}, AbstractArray{Union{Missing, Count},1}}}
└ target_scitype = AbstractArray{Count,1}
Test Summary: | Pass Total
tasks | 19 19
Test Summary: | Pass Total
scitypes | 3 3
Testing MLJ tests passed