Commit: JuliaLang/julia@ea72b9427926640d970b390cb32b9b5f2770838f
Comparison Range: link
Triggered By: link
Tag Predicate: ALL
Daily Job: 2023-04-11 vs 2023-04-10
Note: If Chrome is your browser, I strongly recommend installing the Wide GitHub extension, which makes the result table easier to read.
Below is a table of this job's results, obtained by running the benchmarks found in
JuliaCI/BaseBenchmarks.jl. The values
listed in the ID
column have the structure [parent_group, child_group, ..., key]
,
and can be used to index into the BaseBenchmarks suite to retrieve the corresponding
benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
A ratio greater than 1.0
denotes a possible regression (marked with ❌), while a ratio less
than 1.0
denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).
ID | time ratio | memory ratio |
---|---|---|
["alloc", "arrays"] |
0.95 (5%) ✅ | 1.00 (1%) |
["array", "accumulate", ("cumsum", "Int")] |
0.95 (5%) ✅ | 1.00 (1%) |
["array", "equality", ("==", "BitArray")] |
1.06 (5%) ❌ | 1.00 (1%) |
["array", "equality", ("==", "UnitRange{Int64}")] |
0.92 (5%) ✅ | 1.00 (1%) |
["array", "equality", ("isequal", "UnitRange{Int64}")] |
1.20 (5%) ❌ | 1.00 (1%) |
["array", "equality", ("isequal", "Vector{Float64}")] |
0.94 (5%) ✅ | 1.00 (1%) |
["array", "equality", ("isequal", "Vector{Int64} isequal Vector{Float32}")] |
0.95 (5%) ✅ | 1.00 (1%) |
["array", "equality", ("isequal", "Vector{Int64} isequal Vector{Int64}")] |
1.06 (5%) ❌ | 1.00 (1%) |
["array", "growth", ("push_single!", 8)] |
1.06 (5%) ❌ | 1.00 (1%) |
["array", "index", ("sumvector_view", "Base.ReinterpretArray{BaseBenchmarks.ArrayBenchmarks.PairVals{Float32}, 2, Float32, Matrix{Float32}, false}")] |
2.09 (50%) ❌ | 1.00 (1%) |
["array", "index", ("sumvector_view", "Base.ReinterpretArray{BaseBenchmarks.ArrayBenchmarks.PairVals{Float32}, 2, Float64, Matrix{Float64}, false}")] |
2.00 (50%) ❌ | 1.00 (1%) |
["array", "index", ("sumvector_view", "Base.ReinterpretArray{BaseBenchmarks.ArrayBenchmarks.PairVals{Int32}, 2, Int32, Matrix{Int32}, false}")] |
2.32 (50%) ❌ | 1.00 (1%) |
["array", "index", ("sumvector_view", "Base.ReinterpretArray{BaseBenchmarks.ArrayBenchmarks.PairVals{Int32}, 2, Int64, Matrix{Int64}, false}")] |
2.35 (50%) ❌ | 1.00 (1%) |
["array", "reductions", ("sumabs2", "Float64")] |
0.92 (5%) ✅ | 1.00 (1%) |
["broadcast", "typeargs", ("array", 5)] |
0.82 (5%) ✅ | 1.00 (1%) |
["broadcast", "typeargs", ("tuple", 10)] |
0.95 (5%) ✅ | 1.00 (1%) |
["collection", "initialization", ("Vector", "Any", "iterator")] |
1.26 (25%) ❌ | 1.00 (1%) |
["collection", "set operations", ("BitSet", "Int", "==", "self")] |
0.73 (25%) ✅ | 1.00 (1%) |
["dates", "accessor", "millisecond"] |
1.08 (5%) ❌ | 1.00 (1%) |
["dates", "accessor", "minute"] |
0.91 (5%) ✅ | 1.00 (1%) |
["dates", "accessor", "second"] |
0.91 (5%) ✅ | 1.00 (1%) |
["dates", "conversion", "Date -> DateTime"] |
0.91 (5%) ✅ | 1.00 (1%) |
["dates", "parse", "Date"] |
1.10 (5%) ❌ | 1.00 (1%) |
["dates", "parse", ("Date", "DateFormat")] |
0.89 (5%) ✅ | 1.00 (1%) |
["find", "findall", ("> q0.5", "Vector{Float32}")] |
0.88 (5%) ✅ | 1.00 (1%) |
["find", "findall", ("> q0.5", "Vector{UInt8}")] |
0.90 (5%) ✅ | 1.00 (1%) |
["find", "findall", ("BitVector", "50-50")] |
0.89 (5%) ✅ | 1.00 (1%) |
["find", "findall", ("Vector{Bool}", "10-90")] |
1.05 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("ispos", "Vector{Bool}")] |
0.94 (5%) ✅ | 1.00 (1%) |
["find", "findall", ("ispos", "Vector{Float32}")] |
0.92 (5%) ✅ | 1.00 (1%) |
["find", "findall", ("ispos", "Vector{Float64}")] |
0.93 (5%) ✅ | 1.00 (1%) |
["find", "findall", ("ispos", "Vector{Int64}")] |
0.90 (5%) ✅ | 1.00 (1%) |
["find", "findall", ("ispos", "Vector{Int8}")] |
0.86 (5%) ✅ | 1.00 (1%) |
["find", "findall", ("ispos", "Vector{UInt8}")] |
0.87 (5%) ✅ | 1.00 (1%) |
["find", "findprev", ("ispos", "Vector{Bool}")] |
0.95 (5%) ✅ | 1.00 (1%) |
["inference", "abstract interpretation", "Base.init_stdio(::Ptr{Cvoid})"] |
0.97 (5%) | 0.98 (1%) ✅ |
["inference", "abstract interpretation", "many_opaque_closures"] |
1.00 (5%) | 1.03 (1%) ❌ |
["inference", "allinference", "Base.init_stdio(::Ptr{Cvoid})"] |
0.97 (5%) | 0.98 (1%) ✅ |
["inference", "optimization", "many_const_calls"] |
0.93 (5%) ✅ | 1.00 (1%) |
["inference", "optimization", "many_local_vars"] |
1.13 (5%) ❌ | 1.00 (1%) |
["inference", "optimization", "rand(Float64)"] |
1.09 (5%) ❌ | 1.00 (1%) |
["inference", "optimization", "sin(42)"] |
0.94 (5%) ✅ | 1.00 (1%) |
["io", "serialization", ("deserialize", "Matrix{Float64}")] |
1.06 (5%) ❌ | 1.00 (1%) |
["linalg", "arithmetic", ("*", "typename(SymTridiagonal)", "typename(SymTridiagonal)", 1024)] |
6.74 (45%) ❌ | 1.00 (1%) |
["linalg", "arithmetic", ("-", "Matrix", "Matrix", 1024)] |
2.57 (45%) ❌ | 1.00 (1%) |
["misc", "bitshift", ("UInt", "UInt")] |
0.93 (5%) ✅ | 1.00 (1%) |
["misc", "fastmath many args"] |
0.94 (5%) ✅ | 1.00 (1%) |
["misc", "iterators", "zip(1:1, 1:1, 1:1, 1:1)"] |
0.89 (5%) ✅ | 1.00 (1%) |
["misc", "parse", "Float64"] |
1.05 (5%) ❌ | 1.00 (1%) |
["problem", "grigoriadis khachiyan", "grigoriadis_khachiyan"] |
0.93 (5%) ✅ | 1.00 (1%) |
["problem", "simplex", "simplex"] |
0.92 (5%) ✅ | 1.00 (1%) |
["scalar", "asin", ("0.5 <= abs(x) < 0.975", "negative argument", "Float32")] |
0.88 (5%) ✅ | 1.00 (1%) |
["scalar", "asin", ("abs(x) < 0.5", "negative argument", "Float64")] |
0.80 (5%) ✅ | 1.00 (1%) |
["scalar", "asin", ("abs(x) < 0.5", "positive argument", "Float64")] |
0.80 (5%) ✅ | 1.00 (1%) |
["scalar", "atan", ("very small", "negative argument", "Float64")] |
1.05 (5%) ❌ | 1.00 (1%) |
["scalar", "atan", ("very small", "positive argument", "Float64")] |
1.05 (5%) ❌ | 1.00 (1%) |
["scalar", "atan", ("zero", "Float64")] |
1.05 (5%) ❌ | 1.00 (1%) |
["scalar", "atan2", ("x one", "Float32")] |
1.35 (5%) ❌ | 1.00 (1%) |
["scalar", "atan2", ("x one", "Float64")] |
0.94 (5%) ✅ | 1.00 (1%) |
["scalar", "expm1", ("arg reduction II", "negative argument", "Float64")] |
1.05 (5%) ❌ | 1.00 (1%) |
["scalar", "mod2pi", ("argument reduction (easy) abs(x) > 2.0^20*π/2", "negative argument", "Float64")] |
1.06 (5%) ❌ | 1.00 (1%) |
["scalar", "mod2pi", ("argument reduction (easy) abs(x) > 2.0^20*π/2", "positive argument", "Float64")] |
1.06 (5%) ❌ | 1.00 (1%) |
["scalar", "rem_pio2", ("argument reduction (paynehanek) abs(x) > 2.0^20*π/2", "negative argument", "Float64")] |
1.07 (5%) ❌ | 1.00 (1%) |
["scalar", "rem_pio2", ("argument reduction (paynehanek) abs(x) > 2.0^20*π/2", "positive argument", "Float64")] |
1.07 (5%) ❌ | 1.00 (1%) |
["scalar", "sinh", ("very large", "negative argument", "Float64")] |
1.05 (5%) ❌ | 1.00 (1%) |
["scalar", "sinh", ("very large", "positive argument", "Float64")] |
1.05 (5%) ❌ | 1.00 (1%) |
["scalar", "tan", ("large", "positive argument", "Float64")] |
0.94 (5%) ✅ | 1.00 (1%) |
["scalar", "tan", ("medium", "negative argument", "Float32")] |
1.05 (5%) ❌ | 1.00 (1%) |
["scalar", "tan", ("medium", "positive argument", "Float32")] |
1.06 (5%) ❌ | 1.00 (1%) |
["scalar", "tan", ("medium", "positive argument", "Float64")] |
1.05 (5%) ❌ | 1.00 (1%) |
["simd", ("Cartesian", "axpy!", "Float32", 2, 31)] |
1.26 (20%) ❌ | 1.00 (1%) |
["simd", ("Cartesian", "axpy!", "Float64", 3, 64)] |
0.58 (20%) ✅ | 1.00 (1%) |
["simd", ("Cartesian", "manual_example!", "Float64", 3, 32)] |
1.49 (20%) ❌ | 1.00 (1%) |
["simd", ("Cartesian", "manual_example!", "Float64", 3, 63)] |
1.35 (20%) ❌ | 1.00 (1%) |
["simd", ("Cartesian", "manual_example!", "Int64", 3, 32)] |
1.30 (20%) ❌ | 1.00 (1%) |
["simd", ("Cartesian", "manual_example!", "Int64", 3, 63)] |
1.25 (20%) ❌ | 1.00 (1%) |
["simd", ("Cartesian", "two_reductions", "Float64", 3, 32)] |
1.41 (20%) ❌ | 1.00 (1%) |
["simd", ("Cartesian", "two_reductions", "Int64", 3, 32)] |
1.51 (20%) ❌ | 1.00 (1%) |
["simd", ("Cartesian", "two_reductions", "Int64", 3, 63)] |
1.29 (20%) ❌ | 1.00 (1%) |
["simd", ("CartesianPartition", "axpy!", "Float64", 3, 64)] |
0.73 (20%) ✅ | 1.00 (1%) |
["simd", ("CartesianPartition", "conditional_loop!", "Int32", 3, 31)] |
1.22 (20%) ❌ | 1.00 (1%) |
["simd", ("CartesianPartition", "conditional_loop!", "Int64", 3, 32)] |
1.32 (20%) ❌ | 1.00 (1%) |
["simd", ("CartesianPartition", "manual_example!", "Float64", 3, 32)] |
1.28 (20%) ❌ | 1.00 (1%) |
["simd", ("CartesianPartition", "manual_example!", "Float64", 3, 63)] |
1.25 (20%) ❌ | 1.00 (1%) |
["simd", ("CartesianPartition", "manual_example!", "Int64", 3, 63)] |
1.21 (20%) ❌ | 1.00 (1%) |
["simd", ("CartesianPartition", "two_reductions", "Int64", 3, 63)] |
1.20 (20%) ❌ | 1.00 (1%) |
["sparse", "constructors", ("IJV", 10)] |
1.12 (5%) ❌ | 1.00 (1%) |
["sparse", "constructors", ("IJV", 100)] |
1.08 (5%) ❌ | 1.00 (1%) |
["sparse", "constructors", ("IJV", 1000)] |
1.06 (5%) ❌ | 1.00 (1%) |
["sparse", "constructors", ("SymTridiagonal", 10)] |
0.92 (5%) ✅ | 1.00 (1%) |
["sparse", "sparse matvec", "adjoint"] |
1.17 (5%) ❌ | 1.00 (1%) |
["sparse", "sparse matvec", "non-adjoint"] |
1.20 (5%) ❌ | 1.00 (1%) |
["tuple", "linear algebra", ("matmat", "(4, 4)", "(4, 4)")] |
0.73 (5%) ✅ | 1.00 (1%) |
["tuple", "linear algebra", ("matvec", "(4, 4)", "(4,)")] |
1.09 (5%) ❌ | 1.00 (1%) |
["tuple", "linear algebra", ("matvec", "(8, 8)", "(8,)")] |
1.07 (5%) ❌ | 1.00 (1%) |
["tuple", "reduction", ("sum", "(4, 4)")] |
1.09 (5%) ❌ | 1.00 (1%) |
["union", "array", ("broadcast", "*", "BigInt", "(false, false)")] |
1.19 (5%) ❌ | 1.00 (1%) |
["union", "array", ("broadcast", "*", "BigInt", "(false, true)")] |
1.18 (5%) ❌ | 1.00 (1%) |
["union", "array", ("broadcast", "*", "BigInt", "(true, true)")] |
1.18 (5%) ❌ | 1.00 (1%) |
["union", "array", ("broadcast", "*", "Bool", "(false, true)")] |
0.95 (5%) ✅ | 1.00 (1%) |
["union", "array", ("broadcast", "abs", "Bool", 1)] |
0.83 (5%) ✅ | 1.00 (1%) |
["union", "array", ("broadcast", "abs", "Float32", 1)] |
1.16 (5%) ❌ | 1.00 (1%) |
["union", "array", ("broadcast", "abs", "Float64", 1)] |
0.92 (5%) ✅ | 1.00 (1%) |
["union", "array", ("broadcast", "abs", "Int8", 1)] |
0.79 (5%) ✅ | 1.00 (1%) |
["union", "array", ("broadcast", "identity", "Bool", 1)] |
1.08 (5%) ❌ | 1.00 (1%) |
["union", "array", ("broadcast", "identity", "Int8", 1)] |
0.83 (5%) ✅ | 1.00 (1%) |
["union", "array", ("collect", "all", "Int64", 1)] |
0.89 (5%) ✅ | 1.00 (1%) |
["union", "array", ("map", "abs", "Float32", 1)] |
1.23 (5%) ❌ | 1.00 (1%) |
["union", "array", ("map", "abs", "Float64", 1)] |
0.85 (5%) ✅ | 1.00 (1%) |
["union", "array", ("map", "abs", "Int8", 1)] |
1.08 (5%) ❌ | 1.00 (1%) |
["union", "array", ("map", "identity", "Int64", 1)] |
0.89 (5%) ✅ | 1.00 (1%) |
["union", "array", ("perf_binaryop", "*", "Int8", "(true, true)")] |
1.10 (5%) ❌ | 1.00 (1%) |
["union", "array", ("perf_countequals", "Int64")] |
0.91 (5%) ✅ | 1.00 (1%) |
["union", "array", ("perf_simplecopy", "Int8", 1)] |
1.06 (5%) ❌ | 1.00 (1%) |
["union", "array", ("perf_sum", "Int64", 1)] |
1.06 (5%) ❌ | 1.00 (1%) |
["union", "array", ("perf_sum2", "BigFloat", 1)] |
1.05 (5%) ❌ | 1.00 (1%) |
["union", "array", ("perf_sum3", "Int8", 1)] |
0.87 (5%) ✅ | 1.00 (1%) |
["union", "array", ("perf_sum4", "Int64", 1)] |
1.07 (5%) ❌ | 1.00 (1%) |
["union", "array", ("skipmissing", "collect", "Union{Missing, Float32}", 1)] |
0.94 (5%) ✅ | 1.00 (1%) |
["union", "array", ("skipmissing", "collect", "Union{Missing, Int64}", 1)] |
0.95 (5%) ✅ | 1.00 (1%) |
["union", "array", ("skipmissing", "filter", "Bool", 0)] |
1.07 (5%) ❌ | 1.00 (1%) |
["union", "array", ("skipmissing", "perf_sumskipmissing", "Bool", 0)] |
1.06 (5%) ❌ | 1.00 (1%) |
["union", "array", ("skipmissing", "perf_sumskipmissing", "Union{Nothing, ComplexF64}", 0)] |
0.90 (5%) ✅ | 1.00 (1%) |
["union", "array", ("skipmissing", "sum", "Bool", 0)] |
1.07 (5%) ❌ | 1.00 (1%) |
Here's a list of all the benchmark groups executed by this job:
["alloc"]
["array", "accumulate"]
["array", "any/all"]
["array", "bool"]
["array", "cat"]
["array", "comprehension"]
["array", "convert"]
["array", "equality"]
["array", "growth"]
["array", "index"]
["array", "reductions"]
["array", "reverse"]
["array", "setindex!"]
["array", "subarray"]
["broadcast"]
["broadcast", "dotop"]
["broadcast", "fusion"]
["broadcast", "mix_scalar_tuple"]
["broadcast", "sparse"]
["broadcast", "typeargs"]
["collection", "deletion"]
["collection", "initialization"]
["collection", "iteration"]
["collection", "optimizations"]
["collection", "queries & updates"]
["collection", "set operations"]
["dates", "accessor"]
["dates", "arithmetic"]
["dates", "construction"]
["dates", "conversion"]
["dates", "parse"]
["dates", "query"]
["dates", "string"]
["find", "findall"]
["find", "findnext"]
["find", "findprev"]
["frontend"]
["inference", "abstract interpretation"]
["inference", "allinference"]
["inference", "optimization"]
["io", "array_limit"]
["io", "read"]
["io", "serialization"]
["io"]
["linalg", "arithmetic"]
["linalg", "blas"]
["linalg", "factorization"]
["linalg"]
["micro"]
["misc"]
["misc", "23042"]
["misc", "afoldl"]
["misc", "allocation elision view"]
["misc", "bitshift"]
["misc", "foldl"]
["misc", "issue 12165"]
["misc", "iterators"]
["misc", "julia"]
["misc", "parse"]
["misc", "repeat"]
["misc", "splatting"]
["problem", "chaosgame"]
["problem", "fem"]
["problem", "go"]
["problem", "grigoriadis khachiyan"]
["problem", "imdb"]
["problem", "json"]
["problem", "laplacian"]
["problem", "monte carlo"]
["problem", "raytrace"]
["problem", "seismic"]
["problem", "simplex"]
["problem", "spellcheck"]
["problem", "stockcorr"]
["problem", "ziggurat"]
["random", "collections"]
["random", "randstring"]
["random", "ranges"]
["random", "sequences"]
["random", "types"]
["scalar", "acos"]
["scalar", "acosh"]
["scalar", "arithmetic"]
["scalar", "asin"]
["scalar", "asinh"]
["scalar", "atan"]
["scalar", "atan2"]
["scalar", "atanh"]
["scalar", "cbrt"]
["scalar", "cos"]
["scalar", "cosh"]
["scalar", "exp2"]
["scalar", "expm1"]
["scalar", "fastmath"]
["scalar", "floatexp"]
["scalar", "intfuncs"]
["scalar", "iteration"]
["scalar", "mod2pi"]
["scalar", "predicate"]
["scalar", "rem_pio2"]
["scalar", "sin"]
["scalar", "sincos"]
["scalar", "sinh"]
["scalar", "tan"]
["scalar", "tanh"]
["shootout"]
["simd"]
["sort", "insertionsort"]
["sort", "issorted"]
["sort", "mergesort"]
["sort", "quicksort"]
["sparse", "arithmetic"]
["sparse", "constructors"]
["sparse", "index"]
["sparse", "matmul"]
["sparse", "sparse matvec"]
["sparse", "sparse solves"]
["sparse", "transpose"]
["string", "==(::AbstractString, ::AbstractString)"]
["string", "==(::SubString, ::String)"]
["string", "findfirst"]
["string"]
["string", "readuntil"]
["string", "repeat"]
["tuple", "index"]
["tuple", "linear algebra"]
["tuple", "misc"]
["tuple", "reduction"]
["union", "array"]
Julia Version 1.10.0-DEV.982
Commit ea72b94279 (2023-04-10 14:15 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 22.04.1 LTS
uname: Linux 5.15.0-58-generic #64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3900 MHz 306522 s 32401 s 303088 s 57956745 s 0 s
#2 3571 MHz 5272954 s 20716 s 329850 s 53093594 s 0 s
#3 3900 MHz 303644 s 20766 s 256158 s 58088118 s 0 s
#4 3900 MHz 223020 s 19270 s 245238 s 58092232 s 0 s
Memory: 31.313323974609375 GB (21646.6484375 MB free)
Uptime: 5.88637334e6 sec
Load Avg: 1.0 1.01 1.0
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-14.0.6 (ORCJIT, haswell)
Threads: 1 on 4 virtual cores