Skip to content

Latest commit

 

History

History
320 lines (301 loc) · 18.4 KB

File metadata and controls

320 lines (301 loc) · 18.4 KB

Benchmark Report

Job Properties

Commit: JuliaLang/julia@ea72b9427926640d970b390cb32b9b5f2770838f

Comparison Range: link

Triggered By: link

Tag Predicate: ALL

Daily Job: 2023-04-11 vs 2023-04-10

Results

Note: If Chrome is your browser, I strongly recommend installing the Wide GitHub extension, which makes the result table easier to read.

Below is a table of this job's results, obtained by running the benchmarks found in JuliaCI/BaseBenchmarks.jl. The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.

The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value.

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results that indicate possible regressions or improvements - are shown below (thus, an empty table means that all benchmark results remained invariant between builds).

ID time ratio memory ratio
["alloc", "arrays"] 0.95 (5%) ✅ 1.00 (1%)
["array", "accumulate", ("cumsum", "Int")] 0.95 (5%) ✅ 1.00 (1%)
["array", "equality", ("==", "BitArray")] 1.06 (5%) ❌ 1.00 (1%)
["array", "equality", ("==", "UnitRange{Int64}")] 0.92 (5%) ✅ 1.00 (1%)
["array", "equality", ("isequal", "UnitRange{Int64}")] 1.20 (5%) ❌ 1.00 (1%)
["array", "equality", ("isequal", "Vector{Float64}")] 0.94 (5%) ✅ 1.00 (1%)
["array", "equality", ("isequal", "Vector{Int64} isequal Vector{Float32}")] 0.95 (5%) ✅ 1.00 (1%)
["array", "equality", ("isequal", "Vector{Int64} isequal Vector{Int64}")] 1.06 (5%) ❌ 1.00 (1%)
["array", "growth", ("push_single!", 8)] 1.06 (5%) ❌ 1.00 (1%)
["array", "index", ("sumvector_view", "Base.ReinterpretArray{BaseBenchmarks.ArrayBenchmarks.PairVals{Float32}, 2, Float32, Matrix{Float32}, false}")] 2.09 (50%) ❌ 1.00 (1%)
["array", "index", ("sumvector_view", "Base.ReinterpretArray{BaseBenchmarks.ArrayBenchmarks.PairVals{Float32}, 2, Float64, Matrix{Float64}, false}")] 2.00 (50%) ❌ 1.00 (1%)
["array", "index", ("sumvector_view", "Base.ReinterpretArray{BaseBenchmarks.ArrayBenchmarks.PairVals{Int32}, 2, Int32, Matrix{Int32}, false}")] 2.32 (50%) ❌ 1.00 (1%)
["array", "index", ("sumvector_view", "Base.ReinterpretArray{BaseBenchmarks.ArrayBenchmarks.PairVals{Int32}, 2, Int64, Matrix{Int64}, false}")] 2.35 (50%) ❌ 1.00 (1%)
["array", "reductions", ("sumabs2", "Float64")] 0.92 (5%) ✅ 1.00 (1%)
["broadcast", "typeargs", ("array", 5)] 0.82 (5%) ✅ 1.00 (1%)
["broadcast", "typeargs", ("tuple", 10)] 0.95 (5%) ✅ 1.00 (1%)
["collection", "initialization", ("Vector", "Any", "iterator")] 1.26 (25%) ❌ 1.00 (1%)
["collection", "set operations", ("BitSet", "Int", "==", "self")] 0.73 (25%) ✅ 1.00 (1%)
["dates", "accessor", "millisecond"] 1.08 (5%) ❌ 1.00 (1%)
["dates", "accessor", "minute"] 0.91 (5%) ✅ 1.00 (1%)
["dates", "accessor", "second"] 0.91 (5%) ✅ 1.00 (1%)
["dates", "conversion", "Date -> DateTime"] 0.91 (5%) ✅ 1.00 (1%)
["dates", "parse", "Date"] 1.10 (5%) ❌ 1.00 (1%)
["dates", "parse", ("Date", "DateFormat")] 0.89 (5%) ✅ 1.00 (1%)
["find", "findall", ("> q0.5", "Vector{Float32}")] 0.88 (5%) ✅ 1.00 (1%)
["find", "findall", ("> q0.5", "Vector{UInt8}")] 0.90 (5%) ✅ 1.00 (1%)
["find", "findall", ("BitVector", "50-50")] 0.89 (5%) ✅ 1.00 (1%)
["find", "findall", ("Vector{Bool}", "10-90")] 1.05 (5%) ❌ 1.00 (1%)
["find", "findall", ("ispos", "Vector{Bool}")] 0.94 (5%) ✅ 1.00 (1%)
["find", "findall", ("ispos", "Vector{Float32}")] 0.92 (5%) ✅ 1.00 (1%)
["find", "findall", ("ispos", "Vector{Float64}")] 0.93 (5%) ✅ 1.00 (1%)
["find", "findall", ("ispos", "Vector{Int64}")] 0.90 (5%) ✅ 1.00 (1%)
["find", "findall", ("ispos", "Vector{Int8}")] 0.86 (5%) ✅ 1.00 (1%)
["find", "findall", ("ispos", "Vector{UInt8}")] 0.87 (5%) ✅ 1.00 (1%)
["find", "findprev", ("ispos", "Vector{Bool}")] 0.95 (5%) ✅ 1.00 (1%)
["inference", "abstract interpretation", "Base.init_stdio(::Ptr{Cvoid})"] 0.97 (5%) 0.98 (1%) ✅
["inference", "abstract interpretation", "many_opaque_closures"] 1.00 (5%) 1.03 (1%) ❌
["inference", "allinference", "Base.init_stdio(::Ptr{Cvoid})"] 0.97 (5%) 0.98 (1%) ✅
["inference", "optimization", "many_const_calls"] 0.93 (5%) ✅ 1.00 (1%)
["inference", "optimization", "many_local_vars"] 1.13 (5%) ❌ 1.00 (1%)
["inference", "optimization", "rand(Float64)"] 1.09 (5%) ❌ 1.00 (1%)
["inference", "optimization", "sin(42)"] 0.94 (5%) ✅ 1.00 (1%)
["io", "serialization", ("deserialize", "Matrix{Float64}")] 1.06 (5%) ❌ 1.00 (1%)
["linalg", "arithmetic", ("*", "typename(SymTridiagonal)", "typename(SymTridiagonal)", 1024)] 6.74 (45%) ❌ 1.00 (1%)
["linalg", "arithmetic", ("-", "Matrix", "Matrix", 1024)] 2.57 (45%) ❌ 1.00 (1%)
["misc", "bitshift", ("UInt", "UInt")] 0.93 (5%) ✅ 1.00 (1%)
["misc", "fastmath many args"] 0.94 (5%) ✅ 1.00 (1%)
["misc", "iterators", "zip(1:1, 1:1, 1:1, 1:1)"] 0.89 (5%) ✅ 1.00 (1%)
["misc", "parse", "Float64"] 1.05 (5%) ❌ 1.00 (1%)
["problem", "grigoriadis khachiyan", "grigoriadis_khachiyan"] 0.93 (5%) ✅ 1.00 (1%)
["problem", "simplex", "simplex"] 0.92 (5%) ✅ 1.00 (1%)
["scalar", "asin", ("0.5 <= abs(x) < 0.975", "negative argument", "Float32")] 0.88 (5%) ✅ 1.00 (1%)
["scalar", "asin", ("abs(x) < 0.5", "negative argument", "Float64")] 0.80 (5%) ✅ 1.00 (1%)
["scalar", "asin", ("abs(x) < 0.5", "positive argument", "Float64")] 0.80 (5%) ✅ 1.00 (1%)
["scalar", "atan", ("very small", "negative argument", "Float64")] 1.05 (5%) ❌ 1.00 (1%)
["scalar", "atan", ("very small", "positive argument", "Float64")] 1.05 (5%) ❌ 1.00 (1%)
["scalar", "atan", ("zero", "Float64")] 1.05 (5%) ❌ 1.00 (1%)
["scalar", "atan2", ("x one", "Float32")] 1.35 (5%) ❌ 1.00 (1%)
["scalar", "atan2", ("x one", "Float64")] 0.94 (5%) ✅ 1.00 (1%)
["scalar", "expm1", ("arg reduction II", "negative argument", "Float64")] 1.05 (5%) ❌ 1.00 (1%)
["scalar", "mod2pi", ("argument reduction (easy) abs(x) > 2.0^20*π/2", "negative argument", "Float64")] 1.06 (5%) ❌ 1.00 (1%)
["scalar", "mod2pi", ("argument reduction (easy) abs(x) > 2.0^20*π/2", "positive argument", "Float64")] 1.06 (5%) ❌ 1.00 (1%)
["scalar", "rem_pio2", ("argument reduction (paynehanek) abs(x) > 2.0^20*π/2", "negative argument", "Float64")] 1.07 (5%) ❌ 1.00 (1%)
["scalar", "rem_pio2", ("argument reduction (paynehanek) abs(x) > 2.0^20*π/2", "positive argument", "Float64")] 1.07 (5%) ❌ 1.00 (1%)
["scalar", "sinh", ("very large", "negative argument", "Float64")] 1.05 (5%) ❌ 1.00 (1%)
["scalar", "sinh", ("very large", "positive argument", "Float64")] 1.05 (5%) ❌ 1.00 (1%)
["scalar", "tan", ("large", "positive argument", "Float64")] 0.94 (5%) ✅ 1.00 (1%)
["scalar", "tan", ("medium", "negative argument", "Float32")] 1.05 (5%) ❌ 1.00 (1%)
["scalar", "tan", ("medium", "positive argument", "Float32")] 1.06 (5%) ❌ 1.00 (1%)
["scalar", "tan", ("medium", "positive argument", "Float64")] 1.05 (5%) ❌ 1.00 (1%)
["simd", ("Cartesian", "axpy!", "Float32", 2, 31)] 1.26 (20%) ❌ 1.00 (1%)
["simd", ("Cartesian", "axpy!", "Float64", 3, 64)] 0.58 (20%) ✅ 1.00 (1%)
["simd", ("Cartesian", "manual_example!", "Float64", 3, 32)] 1.49 (20%) ❌ 1.00 (1%)
["simd", ("Cartesian", "manual_example!", "Float64", 3, 63)] 1.35 (20%) ❌ 1.00 (1%)
["simd", ("Cartesian", "manual_example!", "Int64", 3, 32)] 1.30 (20%) ❌ 1.00 (1%)
["simd", ("Cartesian", "manual_example!", "Int64", 3, 63)] 1.25 (20%) ❌ 1.00 (1%)
["simd", ("Cartesian", "two_reductions", "Float64", 3, 32)] 1.41 (20%) ❌ 1.00 (1%)
["simd", ("Cartesian", "two_reductions", "Int64", 3, 32)] 1.51 (20%) ❌ 1.00 (1%)
["simd", ("Cartesian", "two_reductions", "Int64", 3, 63)] 1.29 (20%) ❌ 1.00 (1%)
["simd", ("CartesianPartition", "axpy!", "Float64", 3, 64)] 0.73 (20%) ✅ 1.00 (1%)
["simd", ("CartesianPartition", "conditional_loop!", "Int32", 3, 31)] 1.22 (20%) ❌ 1.00 (1%)
["simd", ("CartesianPartition", "conditional_loop!", "Int64", 3, 32)] 1.32 (20%) ❌ 1.00 (1%)
["simd", ("CartesianPartition", "manual_example!", "Float64", 3, 32)] 1.28 (20%) ❌ 1.00 (1%)
["simd", ("CartesianPartition", "manual_example!", "Float64", 3, 63)] 1.25 (20%) ❌ 1.00 (1%)
["simd", ("CartesianPartition", "manual_example!", "Int64", 3, 63)] 1.21 (20%) ❌ 1.00 (1%)
["simd", ("CartesianPartition", "two_reductions", "Int64", 3, 63)] 1.20 (20%) ❌ 1.00 (1%)
["sparse", "constructors", ("IJV", 10)] 1.12 (5%) ❌ 1.00 (1%)
["sparse", "constructors", ("IJV", 100)] 1.08 (5%) ❌ 1.00 (1%)
["sparse", "constructors", ("IJV", 1000)] 1.06 (5%) ❌ 1.00 (1%)
["sparse", "constructors", ("SymTridiagonal", 10)] 0.92 (5%) ✅ 1.00 (1%)
["sparse", "sparse matvec", "adjoint"] 1.17 (5%) ❌ 1.00 (1%)
["sparse", "sparse matvec", "non-adjoint"] 1.20 (5%) ❌ 1.00 (1%)
["tuple", "linear algebra", ("matmat", "(4, 4)", "(4, 4)")] 0.73 (5%) ✅ 1.00 (1%)
["tuple", "linear algebra", ("matvec", "(4, 4)", "(4,)")] 1.09 (5%) ❌ 1.00 (1%)
["tuple", "linear algebra", ("matvec", "(8, 8)", "(8,)")] 1.07 (5%) ❌ 1.00 (1%)
["tuple", "reduction", ("sum", "(4, 4)")] 1.09 (5%) ❌ 1.00 (1%)
["union", "array", ("broadcast", "*", "BigInt", "(false, false)")] 1.19 (5%) ❌ 1.00 (1%)
["union", "array", ("broadcast", "*", "BigInt", "(false, true)")] 1.18 (5%) ❌ 1.00 (1%)
["union", "array", ("broadcast", "*", "BigInt", "(true, true)")] 1.18 (5%) ❌ 1.00 (1%)
["union", "array", ("broadcast", "*", "Bool", "(false, true)")] 0.95 (5%) ✅ 1.00 (1%)
["union", "array", ("broadcast", "abs", "Bool", 1)] 0.83 (5%) ✅ 1.00 (1%)
["union", "array", ("broadcast", "abs", "Float32", 1)] 1.16 (5%) ❌ 1.00 (1%)
["union", "array", ("broadcast", "abs", "Float64", 1)] 0.92 (5%) ✅ 1.00 (1%)
["union", "array", ("broadcast", "abs", "Int8", 1)] 0.79 (5%) ✅ 1.00 (1%)
["union", "array", ("broadcast", "identity", "Bool", 1)] 1.08 (5%) ❌ 1.00 (1%)
["union", "array", ("broadcast", "identity", "Int8", 1)] 0.83 (5%) ✅ 1.00 (1%)
["union", "array", ("collect", "all", "Int64", 1)] 0.89 (5%) ✅ 1.00 (1%)
["union", "array", ("map", "abs", "Float32", 1)] 1.23 (5%) ❌ 1.00 (1%)
["union", "array", ("map", "abs", "Float64", 1)] 0.85 (5%) ✅ 1.00 (1%)
["union", "array", ("map", "abs", "Int8", 1)] 1.08 (5%) ❌ 1.00 (1%)
["union", "array", ("map", "identity", "Int64", 1)] 0.89 (5%) ✅ 1.00 (1%)
["union", "array", ("perf_binaryop", "*", "Int8", "(true, true)")] 1.10 (5%) ❌ 1.00 (1%)
["union", "array", ("perf_countequals", "Int64")] 0.91 (5%) ✅ 1.00 (1%)
["union", "array", ("perf_simplecopy", "Int8", 1)] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", ("perf_sum", "Int64", 1)] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", ("perf_sum2", "BigFloat", 1)] 1.05 (5%) ❌ 1.00 (1%)
["union", "array", ("perf_sum3", "Int8", 1)] 0.87 (5%) ✅ 1.00 (1%)
["union", "array", ("perf_sum4", "Int64", 1)] 1.07 (5%) ❌ 1.00 (1%)
["union", "array", ("skipmissing", "collect", "Union{Missing, Float32}", 1)] 0.94 (5%) ✅ 1.00 (1%)
["union", "array", ("skipmissing", "collect", "Union{Missing, Int64}", 1)] 0.95 (5%) ✅ 1.00 (1%)
["union", "array", ("skipmissing", "filter", "Bool", 0)] 1.07 (5%) ❌ 1.00 (1%)
["union", "array", ("skipmissing", "perf_sumskipmissing", "Bool", 0)] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", ("skipmissing", "perf_sumskipmissing", "Union{Nothing, ComplexF64}", 0)] 0.90 (5%) ✅ 1.00 (1%)
["union", "array", ("skipmissing", "sum", "Bool", 0)] 1.07 (5%) ❌ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["alloc"]
  • ["array", "accumulate"]
  • ["array", "any/all"]
  • ["array", "bool"]
  • ["array", "cat"]
  • ["array", "comprehension"]
  • ["array", "convert"]
  • ["array", "equality"]
  • ["array", "growth"]
  • ["array", "index"]
  • ["array", "reductions"]
  • ["array", "reverse"]
  • ["array", "setindex!"]
  • ["array", "subarray"]
  • ["broadcast"]
  • ["broadcast", "dotop"]
  • ["broadcast", "fusion"]
  • ["broadcast", "mix_scalar_tuple"]
  • ["broadcast", "sparse"]
  • ["broadcast", "typeargs"]
  • ["collection", "deletion"]
  • ["collection", "initialization"]
  • ["collection", "iteration"]
  • ["collection", "optimizations"]
  • ["collection", "queries & updates"]
  • ["collection", "set operations"]
  • ["dates", "accessor"]
  • ["dates", "arithmetic"]
  • ["dates", "construction"]
  • ["dates", "conversion"]
  • ["dates", "parse"]
  • ["dates", "query"]
  • ["dates", "string"]
  • ["find", "findall"]
  • ["find", "findnext"]
  • ["find", "findprev"]
  • ["frontend"]
  • ["inference", "abstract interpretation"]
  • ["inference", "allinference"]
  • ["inference", "optimization"]
  • ["io", "array_limit"]
  • ["io", "read"]
  • ["io", "serialization"]
  • ["io"]
  • ["linalg", "arithmetic"]
  • ["linalg", "blas"]
  • ["linalg", "factorization"]
  • ["linalg"]
  • ["micro"]
  • ["misc"]
  • ["misc", "23042"]
  • ["misc", "afoldl"]
  • ["misc", "allocation elision view"]
  • ["misc", "bitshift"]
  • ["misc", "foldl"]
  • ["misc", "issue 12165"]
  • ["misc", "iterators"]
  • ["misc", "julia"]
  • ["misc", "parse"]
  • ["misc", "repeat"]
  • ["misc", "splatting"]
  • ["problem", "chaosgame"]
  • ["problem", "fem"]
  • ["problem", "go"]
  • ["problem", "grigoriadis khachiyan"]
  • ["problem", "imdb"]
  • ["problem", "json"]
  • ["problem", "laplacian"]
  • ["problem", "monte carlo"]
  • ["problem", "raytrace"]
  • ["problem", "seismic"]
  • ["problem", "simplex"]
  • ["problem", "spellcheck"]
  • ["problem", "stockcorr"]
  • ["problem", "ziggurat"]
  • ["random", "collections"]
  • ["random", "randstring"]
  • ["random", "ranges"]
  • ["random", "sequences"]
  • ["random", "types"]
  • ["scalar", "acos"]
  • ["scalar", "acosh"]
  • ["scalar", "arithmetic"]
  • ["scalar", "asin"]
  • ["scalar", "asinh"]
  • ["scalar", "atan"]
  • ["scalar", "atan2"]
  • ["scalar", "atanh"]
  • ["scalar", "cbrt"]
  • ["scalar", "cos"]
  • ["scalar", "cosh"]
  • ["scalar", "exp2"]
  • ["scalar", "expm1"]
  • ["scalar", "fastmath"]
  • ["scalar", "floatexp"]
  • ["scalar", "intfuncs"]
  • ["scalar", "iteration"]
  • ["scalar", "mod2pi"]
  • ["scalar", "predicate"]
  • ["scalar", "rem_pio2"]
  • ["scalar", "sin"]
  • ["scalar", "sincos"]
  • ["scalar", "sinh"]
  • ["scalar", "tan"]
  • ["scalar", "tanh"]
  • ["shootout"]
  • ["simd"]
  • ["sort", "insertionsort"]
  • ["sort", "issorted"]
  • ["sort", "mergesort"]
  • ["sort", "quicksort"]
  • ["sparse", "arithmetic"]
  • ["sparse", "constructors"]
  • ["sparse", "index"]
  • ["sparse", "matmul"]
  • ["sparse", "sparse matvec"]
  • ["sparse", "sparse solves"]
  • ["sparse", "transpose"]
  • ["string", "==(::AbstractString, ::AbstractString)"]
  • ["string", "==(::SubString, ::String)"]
  • ["string", "findfirst"]
  • ["string"]
  • ["string", "readuntil"]
  • ["string", "repeat"]
  • ["tuple", "index"]
  • ["tuple", "linear algebra"]
  • ["tuple", "misc"]
  • ["tuple", "reduction"]
  • ["union", "array"]

Version Info

Primary Build

Julia Version 1.10.0-DEV.982
Commit ea72b94279 (2023-04-10 14:15 UTC)
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.1 LTS
  uname: Linux 5.15.0-58-generic #64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023 x86_64 x86_64
  CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz: 
              speed         user         nice          sys         idle          irq
       #1  3900 MHz     306522 s      32401 s     303088 s   57956745 s          0 s
       #2  3571 MHz    5272954 s      20716 s     329850 s   53093594 s          0 s
       #3  3900 MHz     303644 s      20766 s     256158 s   58088118 s          0 s
       #4  3900 MHz     223020 s      19270 s     245238 s   58092232 s          0 s
  Memory: 31.313323974609375 GB (21646.6484375 MB free)
  Uptime: 5.88637334e6 sec
  Load Avg:  1.0  1.01  1.0
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-14.0.6 (ORCJIT, haswell)
  Threads: 1 on 4 virtual cores