Skip to content

Latest commit

 

History

History
322 lines (303 loc) · 18.6 KB

File metadata and controls

322 lines (303 loc) · 18.6 KB

Benchmark Report

Job Properties

Commit: JuliaLang/julia@90b4eedbf4b2beae0b12e6b8317e15ef0bb91126

Comparison Range: link

Triggered By: link

Tag Predicate: ALL

Daily Job: 2023-08-16 vs 2023-08-14

Results

Note: If Chrome is your browser, I strongly recommend installing the Wide GitHub extension, which makes the result table easier to read.

Below is a table of this job's results, obtained by running the benchmarks found in JuliaCI/BaseBenchmarks.jl. The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.

The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value.

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results that indicate possible regressions or improvements - are shown below (thus, an empty table means that all benchmark results remained invariant between builds).

ID time ratio memory ratio
["alloc", "structs"] 1.07 (5%) ❌ 1.00 (1%)
["array", "cat", ("catnd", 5)] 1.17 (5%) ❌ 1.00 (1%)
["array", "cat", ("vcat", 5)] 1.07 (5%) ❌ 1.00 (1%)
["array", "equality", ("==", "UnitRange{Int64}")] 0.84 (5%) ✅ 1.00 (1%)
["array", "equality", ("isequal", "UnitRange{Int64}")] 1.10 (5%) ❌ 1.00 (1%)
["array", "equality", ("isequal", "Vector{Int64} isequal Vector{Float32}")] 1.08 (5%) ❌ 1.00 (1%)
["array", "equality", ("isequal", "Vector{Int64} isequal Vector{Float64}")] 1.10 (5%) ❌ 1.00 (1%)
["array", "equality", ("isequal", "Vector{Int64} isequal Vector{Int64}")] 0.94 (5%) ✅ 1.00 (1%)
["array", "index", "6d"] 0.93 (5%) ✅ 1.00 (1%)
["array", "reductions", ("perf_mapreduce", "Int64")] 1.06 (5%) ❌ 1.00 (1%)
["array", "reductions", ("perf_reduce", "Int64")] 1.06 (5%) ❌ 1.00 (1%)
["array", "reverse", "rev_load_fast!"] 1.06 (5%) ❌ 1.00 (1%)
["broadcast", "dotop", ("Float64", "(1000, 1000)", 2)] 1.08 (5%) ❌ 1.00 (1%)
["broadcast", "mix_scalar_tuple", (10, "scal_tup_x3")] 1.40 (5%) ❌ 1.00 (1%)
["collection", "optimizations", ("Set", "concrete", "Nothing")] 0.62 (25%) ✅ 1.00 (1%)
["collection", "queries & updates", ("BitSet", "Int", "length")] 0.42 (25%) ✅ 1.00 (1%)
["collection", "set operations", ("BitSet", "Int", "==", "self")] 0.37 (25%) ✅ 1.00 (1%)
["collection", "set operations", ("BitSet", "Int", "symdiff", "Set", "Set")] 1.39 (25%) ❌ 1.00 (1%)
["collection", "set operations", ("BitSet", "Int", "⊆", "Set")] 0.50 (25%) ✅ 1.00 (1%)
["collection", "set operations", ("BitSet", "Int", "⊆", "Vector")] 0.51 (25%) ✅ 1.00 (1%)
["collection", "set operations", ("Set", "Int", "<", "Set")] 1.30 (25%) ❌ 1.00 (1%)
["dates", "parse", ("Date", "DateFormat")] 1.16 (5%) ❌ 1.00 (1%)
["dates", "parse", ("DateTime", "DateFormat")] 0.89 (5%) ✅ 1.00 (1%)
["find", "findall", ("> q0.5", "Vector{Float32}")] 0.94 (5%) ✅ 1.00 (1%)
["find", "findall", ("> q0.8", "Vector{Float32}")] 0.95 (5%) ✅ 1.00 (1%)
["find", "findall", ("BitVector", "50-50")] 0.94 (5%) ✅ 1.00 (1%)
["find", "findnext", ("ispos", "Vector{UInt64}")] 0.90 (5%) ✅ 1.00 (1%)
["find", "findnext", ("ispos", "Vector{UInt8}")] 0.94 (5%) ✅ 1.00 (1%)
["find", "findprev", ("ispos", "Vector{Float64}")] 0.89 (5%) ✅ 1.00 (1%)
["inference", "abstract interpretation", "Base.init_stdio(::Ptr{Cvoid})"] 0.93 (5%) ✅ 0.90 (1%) ✅
["inference", "abstract interpretation", "REPL.REPLCompletions.completions"] 0.98 (5%) 0.97 (1%) ✅
["inference", "abstract interpretation", "broadcasting"] 0.84 (5%) ✅ 0.84 (1%) ✅
["inference", "abstract interpretation", "many_opaque_closures"] 0.98 (5%) 0.97 (1%) ✅
["inference", "abstract interpretation", "println(::QuoteNode)"] 0.86 (5%) ✅ 0.87 (1%) ✅
["inference", "allinference", "Base.init_stdio(::Ptr{Cvoid})"] 0.89 (5%) ✅ 0.89 (1%) ✅
["inference", "allinference", "REPL.REPLCompletions.completions"] 0.96 (5%) 0.96 (1%) ✅
["inference", "allinference", "println(::QuoteNode)"] 0.86 (5%) ✅ 0.87 (1%) ✅
["inference", "optimization", "REPL.REPLCompletions.completions"] 0.92 (5%) ✅ 1.00 (1%)
["inference", "optimization", "sin(42)"] 1.10 (5%) ❌ 1.00 (1%)
["io", "array_limit", ("display", "Matrix{Float64}(10000, 10000)")] 0.92 (5%) ✅ 1.00 (1%)
["io", "serialization", ("deserialize", "Matrix{Float64}")] 1.09 (5%) ❌ 1.00 (1%)
["misc", "allocation elision view", "no conditional"] 0.89 (5%) ✅ 1.00 (1%)
["misc", "iterators", "zip(1:1, 1:1, 1:1)"] 0.93 (5%) ✅ 1.00 (1%)
["misc", "julia", ("macroexpand", "evalpoly")] 0.93 (5%) ✅ 1.00 (1%)
["misc", "julia", ("parse", "function")] 1.22 (5%) ❌ 1.00 (1%)
["problem", "laplacian", "laplace_iter_sub"] 1.08 (5%) ❌ 1.00 (1%)
["problem", "simplex", "simplex"] 0.92 (5%) ✅ 1.00 (1%)
["random", "ranges", ("RangeGenerator", "BigInt", "1:170141183460469231731687303715884105728")] 1.26 (25%) ❌ 1.00 (1%)
["random", "ranges", ("RangeGenerator", "BigInt", "1:18446744073709551616")] 1.30 (25%) ❌ 1.00 (1%)
["scalar", "acosh", ("1 <= abs(x) < 2", "positive argument", "Float64")] 0.89 (5%) ✅ 1.00 (1%)
["scalar", "asinh", ("2 <= abs(x) < 2^28", "negative argument", "Float32")] 1.08 (5%) ❌ 1.00 (1%)
["scalar", "asinh", ("2 <= abs(x) < 2^28", "positive argument", "Float32")] 1.08 (5%) ❌ 1.00 (1%)
["scalar", "asinh", ("2^-28 <= abs(x) < 2", "negative argument", "Float32")] 1.10 (5%) ❌ 1.00 (1%)
["scalar", "asinh", ("2^-28 <= abs(x) < 2", "positive argument", "Float32")] 1.10 (5%) ❌ 1.00 (1%)
["scalar", "asinh", ("very small", "negative argument", "Float64")] 1.05 (5%) ❌ 1.00 (1%)
["scalar", "asinh", ("very small", "positive argument", "Float64")] 1.05 (5%) ❌ 1.00 (1%)
["scalar", "asinh", ("zero", "Float64")] 1.05 (5%) ❌ 1.00 (1%)
["scalar", "atan", ("0 <= abs(x) < 7/16", "negative argument", "Float64")] 0.93 (5%) ✅ 1.00 (1%)
["scalar", "atan", ("0 <= abs(x) < 7/16", "positive argument", "Float64")] 0.93 (5%) ✅ 1.00 (1%)
["scalar", "atan", ("very large", "negative argument", "Float64")] 1.06 (5%) ❌ 1.00 (1%)
["scalar", "atan", ("very large", "positive argument", "Float64")] 1.06 (5%) ❌ 1.00 (1%)
["scalar", "atan", ("very small", "negative argument", "Float64")] 1.05 (5%) ❌ 1.00 (1%)
["scalar", "atan", ("very small", "positive argument", "Float64")] 1.05 (5%) ❌ 1.00 (1%)
["scalar", "atan", ("zero", "Float64")] 1.06 (5%) ❌ 1.00 (1%)
["scalar", "atan2", ("abs(y/x) small", "y positive", "x positive", "Float64")] 1.15 (5%) ❌ 1.00 (1%)
["scalar", "atan2", ("x one", "Float32")] 0.70 (5%) ✅ 1.00 (1%)
["scalar", "atanh", ("2^-28 <= abs(x) < 0.5", "negative argument", "Float64")] 0.79 (5%) ✅ 1.00 (1%)
["scalar", "atanh", ("2^-28 <= abs(x) < 0.5", "positive argument", "Float64")] 0.79 (5%) ✅ 1.00 (1%)
["scalar", "exp2", ("2pow127", "negative argument", "Float32")] 0.88 (5%) ✅ 1.00 (1%)
["scalar", "exp2", ("2pow127", "positive argument", "Float32")] 0.88 (5%) ✅ 1.00 (1%)
["scalar", "expm1", ("large", "positive argument", "Float64")] 0.90 (5%) ✅ 1.00 (1%)
["scalar", "rem_pio2", ("argument reduction (easy) abs(x) < 2π/4", "positive argument", "Float64")] 0.95 (5%) ✅ 1.00 (1%)
["scalar", "sin", ("argument reduction (paynehanek) abs(x) > 2.0^20*π/2", "positive argument", "Float32", "cos_kernel")] 1.31 (5%) ❌ 1.00 (1%)
["scalar", "sinh", ("0 <= abs(x) < 2.0^-28", "negative argument", "Float64")] 0.82 (5%) ✅ 1.00 (1%)
["scalar", "sinh", ("0 <= abs(x) < 2.0^-28", "positive argument", "Float64")] 0.82 (5%) ✅ 1.00 (1%)
["scalar", "sinh", ("zero", "Float64")] 0.82 (5%) ✅ 1.00 (1%)
["scalar", "tan", ("large", "negative argument", "Float32")] 1.11 (5%) ❌ 1.00 (1%)
["scalar", "tan", ("medium", "negative argument", "Float64")] 1.13 (5%) ❌ 1.00 (1%)
["shootout", "meteor_contest"] 0.94 (5%) ✅ 1.00 (1%)
["simd", ("Cartesian", "manual_example!", "Float32", 4, 32)] 1.22 (20%) ❌ 1.00 (1%)
["sparse", "constructors", ("IJV", 1000)] 0.93 (5%) ✅ 1.00 (1%)
["sparse", "constructors", ("SymTridiagonal", 10)] 1.05 (5%) ❌ 1.00 (1%)
["sparse", "constructors", ("Tridiagonal", 10)] 1.05 (5%) ❌ 1.00 (1%)
["string", "==(::SubString, ::String)", "equal"] 1.46 (5%) ❌ 1.00 (1%)
["string", "readuntil", "target length 2"] 1.06 (5%) ❌ 1.00 (1%)
["string", "repeat", "repeat char 2"] 0.93 (5%) ✅ 1.00 (1%)
["string", "repeat", "repeat str len 1"] 0.94 (5%) ✅ 1.00 (1%)
["tuple", "linear algebra", ("matmat", "(8, 8)", "(8, 8)")] 1.16 (5%) ❌ 1.00 (1%)
["tuple", "linear algebra", ("matvec", "(16, 16)", "(16,)")] 1.06 (5%) ❌ 1.00 (1%)
["tuple", "linear algebra", ("matvec", "(8, 8)", "(8,)")] 1.07 (5%) ❌ 1.00 (1%)
["tuple", "misc", "longtuple"] 0.94 (5%) ✅ 1.00 (1%)
["tuple", "reduction", ("minimum", "(2,)")] 1.07 (5%) ❌ 1.00 (1%)
["tuple", "reduction", ("minimum", "(4,)")] 1.06 (5%) ❌ 1.00 (1%)
["tuple", "reduction", ("sum", "(2, 2)")] 0.83 (5%) ✅ 1.00 (1%)
["tuple", "reduction", ("sum", "(4,)")] 0.93 (5%) ✅ 1.00 (1%)
["tuple", "reduction", ("sum", "(8, 8)")] 1.31 (5%) ❌ 1.00 (1%)
["tuple", "reduction", ("sum", "(8,)")] 1.12 (5%) ❌ 1.00 (1%)
["tuple", "reduction", ("sumabs", "(2,)")] 0.93 (5%) ✅ 1.00 (1%)
["union", "array", ("broadcast", "*", "Float32", "(false, true)")] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", ("broadcast", "*", "Float64", "(true, true)")] 0.94 (5%) ✅ 1.00 (1%)
["union", "array", ("broadcast", "*", "Int64", "(true, true)")] 0.92 (5%) ✅ 1.00 (1%)
["union", "array", ("collect", "all", "Bool", 0)] 1.12 (5%) ❌ 1.00 (1%)
["union", "array", ("collect", "all", "Bool", 1)] 0.90 (5%) ✅ 1.00 (1%)
["union", "array", ("map", "*", "ComplexF64", "(false, true)")] 0.92 (5%) ✅ 1.00 (1%)
["union", "array", ("map", "abs", "Bool", 0)] 0.89 (5%) ✅ 1.00 (1%)
["union", "array", ("map", "abs", "Bool", 1)] 1.10 (5%) ❌ 1.00 (1%)
["union", "array", ("map", "abs", "Float32", 1)] 1.09 (5%) ❌ 1.00 (1%)
["union", "array", ("map", "abs", "Int8", 0)] 1.13 (5%) ❌ 1.00 (1%)
["union", "array", ("map", "abs", "Int8", 1)] 1.07 (5%) ❌ 1.00 (1%)
["union", "array", ("map", "identity", "Bool", 0)] 1.12 (5%) ❌ 1.00 (1%)
["union", "array", ("map", "identity", "Bool", 1)] 0.90 (5%) ✅ 1.00 (1%)
["union", "array", ("perf_binaryop", "*", "Float32", "(false, true)")] 1.10 (5%) ❌ 1.00 (1%)
["union", "array", ("perf_binaryop", "*", "Float32", "(true, true)")] 1.09 (5%) ❌ 1.00 (1%)
["union", "array", ("perf_simplecopy", "Bool", 1)] 0.88 (5%) ✅ 1.00 (1%)
["union", "array", ("perf_sum", "Int8", 0)] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", ("perf_sum3", "Float32", 1)] 0.89 (5%) ✅ 1.00 (1%)
["union", "array", ("perf_sum3", "Int8", 1)] 1.22 (5%) ❌ 1.00 (1%)
["union", "array", ("perf_sum4", "Int8", 0)] 1.07 (5%) ❌ 1.00 (1%)
["union", "array", ("skipmissing", "collect", "Union{Missing, Bool}", 1)] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", ("skipmissing", "collect", "Union{Nothing, Int64}", 0)] 1.05 (5%) ❌ 1.00 (1%)
["union", "array", ("skipmissing", "eachindex", "Union{Missing, Float64}", 1)] 0.94 (5%) ✅ 1.00 (1%)
["union", "array", ("skipmissing", "keys", "Union{Missing, ComplexF64}", 1)] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", ("skipmissing", "keys", "Union{Missing, Int8}", 1)] 0.94 (5%) ✅ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["alloc"]
  • ["array", "accumulate"]
  • ["array", "any/all"]
  • ["array", "bool"]
  • ["array", "cat"]
  • ["array", "comprehension"]
  • ["array", "convert"]
  • ["array", "equality"]
  • ["array", "growth"]
  • ["array", "index"]
  • ["array", "reductions"]
  • ["array", "reverse"]
  • ["array", "setindex!"]
  • ["array", "subarray"]
  • ["broadcast"]
  • ["broadcast", "dotop"]
  • ["broadcast", "fusion"]
  • ["broadcast", "mix_scalar_tuple"]
  • ["broadcast", "sparse"]
  • ["broadcast", "typeargs"]
  • ["collection", "deletion"]
  • ["collection", "initialization"]
  • ["collection", "iteration"]
  • ["collection", "optimizations"]
  • ["collection", "queries & updates"]
  • ["collection", "set operations"]
  • ["dates", "accessor"]
  • ["dates", "arithmetic"]
  • ["dates", "construction"]
  • ["dates", "conversion"]
  • ["dates", "parse"]
  • ["dates", "query"]
  • ["dates", "string"]
  • ["find", "findall"]
  • ["find", "findnext"]
  • ["find", "findprev"]
  • ["frontend"]
  • ["inference", "abstract interpretation"]
  • ["inference", "allinference"]
  • ["inference", "optimization"]
  • ["io", "array_limit"]
  • ["io", "read"]
  • ["io", "serialization"]
  • ["io"]
  • ["linalg", "arithmetic"]
  • ["linalg", "blas"]
  • ["linalg", "factorization"]
  • ["linalg"]
  • ["micro"]
  • ["misc"]
  • ["misc", "23042"]
  • ["misc", "afoldl"]
  • ["misc", "allocation elision view"]
  • ["misc", "bitshift"]
  • ["misc", "foldl"]
  • ["misc", "issue 12165"]
  • ["misc", "iterators"]
  • ["misc", "julia"]
  • ["misc", "parse"]
  • ["misc", "repeat"]
  • ["misc", "splatting"]
  • ["problem", "chaosgame"]
  • ["problem", "fem"]
  • ["problem", "go"]
  • ["problem", "grigoriadis khachiyan"]
  • ["problem", "imdb"]
  • ["problem", "json"]
  • ["problem", "laplacian"]
  • ["problem", "monte carlo"]
  • ["problem", "raytrace"]
  • ["problem", "seismic"]
  • ["problem", "simplex"]
  • ["problem", "spellcheck"]
  • ["problem", "stockcorr"]
  • ["problem", "ziggurat"]
  • ["random", "collections"]
  • ["random", "randstring"]
  • ["random", "ranges"]
  • ["random", "sequences"]
  • ["random", "types"]
  • ["scalar", "acos"]
  • ["scalar", "acosh"]
  • ["scalar", "arithmetic"]
  • ["scalar", "asin"]
  • ["scalar", "asinh"]
  • ["scalar", "atan"]
  • ["scalar", "atan2"]
  • ["scalar", "atanh"]
  • ["scalar", "cbrt"]
  • ["scalar", "cos"]
  • ["scalar", "cosh"]
  • ["scalar", "exp2"]
  • ["scalar", "expm1"]
  • ["scalar", "fastmath"]
  • ["scalar", "floatexp"]
  • ["scalar", "intfuncs"]
  • ["scalar", "iteration"]
  • ["scalar", "mod2pi"]
  • ["scalar", "predicate"]
  • ["scalar", "rem_pio2"]
  • ["scalar", "sin"]
  • ["scalar", "sincos"]
  • ["scalar", "sinh"]
  • ["scalar", "tan"]
  • ["scalar", "tanh"]
  • ["shootout"]
  • ["simd"]
  • ["sort", "insertionsort"]
  • ["sort", "issorted"]
  • ["sort", "mergesort"]
  • ["sort", "quicksort"]
  • ["sparse", "arithmetic"]
  • ["sparse", "constructors"]
  • ["sparse", "index"]
  • ["sparse", "matmul"]
  • ["sparse", "sparse matvec"]
  • ["sparse", "sparse solves"]
  • ["sparse", "transpose"]
  • ["string", "==(::AbstractString, ::AbstractString)"]
  • ["string", "==(::SubString, ::String)"]
  • ["string", "findfirst"]
  • ["string"]
  • ["string", "readuntil"]
  • ["string", "repeat"]
  • ["tuple", "index"]
  • ["tuple", "linear algebra"]
  • ["tuple", "misc"]
  • ["tuple", "reduction"]
  • ["union", "array"]

Version Info

Primary Build

Julia Version 1.11.0-DEV.286
Commit 90b4eedbf4 (2023-08-16 10:36 UTC)
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.3 LTS
  uname: Linux 5.15.0-76-generic #83-Ubuntu SMP Thu Jun 15 19:16:32 UTC 2023 x86_64 x86_64
  CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz: 
              speed         user         nice          sys         idle          irq
       #1   900 MHz     109932 s         34 s      51831 s   35302089 s          0 s
       #2   800 MHz    3493750 s         59 s     108404 s   31866783 s          0 s
       #3   800 MHz     102918 s         73 s      50054 s   35278302 s          0 s
       #4   800 MHz      89730 s         33 s      54050 s   35281473 s          0 s
       #5   800 MHz      83909 s         60 s      57474 s   35164334 s          0 s
       #6  3500 MHz      89645 s         42 s      52664 s   35306623 s          0 s
       #7  2500 MHz      96992 s         23 s      66684 s   35298272 s          0 s
       #8  3500 MHz      91809 s         32 s      46968 s   35321403 s          0 s
  Memory: 31.301593780517578 GB (24824.03515625 MB free)
  Uptime: 3.55020883e6 sec
  Load Avg:  1.09  1.04  1.01
  WORD_SIZE: 64
  LLVM: libLLVM-15.0.7 (ORCJIT, haswell)
  Threads: 1 on 8 virtual cores