Commits: JuliaLang/julia@38304cd21649c5574ce35cc4c29f8301a764f6f9 vs JuliaLang/julia@1e64682b8bec60dd561c5613481f1ad3039041fc
Comparison Diff: link
Triggered By: link
Tag Predicate: "linalg" || ("simd" || "inference")
Note: If Chrome is your browser, I strongly recommend installing the Wide GitHub extension, which makes the result table easier to read.
Below is a table of this job's results, obtained by running the benchmarks found in
JuliaCI/BaseBenchmarks.jl. The values
listed in the ID
column have the structure [parent_group, child_group, ..., key]
,
and can be used to index into the BaseBenchmarks suite to retrieve the corresponding
benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
A ratio greater than 1.0
denotes a possible regression (marked with ❌), while a ratio less
than 1.0
denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).
ID | time ratio | memory ratio |
---|---|---|
["inference", "abstract interpretation", "abstract_call_gf_by_type"] |
0.93 (5%) ✅ | 0.96 (1%) ✅ |
["inference", "abstract interpretation", "construct_ssa!"] |
0.94 (5%) ✅ | 0.96 (1%) ✅ |
["inference", "abstract interpretation", "domsort_ssa!"] |
0.96 (5%) | 0.96 (1%) ✅ |
["inference", "abstract interpretation", "println(::QuoteNode)"] |
0.98 (5%) | 0.96 (1%) ✅ |
["inference", "abstract interpretation", "rand(Float64)"] |
1.01 (5%) | 0.97 (1%) ✅ |
["inference", "abstract interpretation", "sin(42)"] |
0.96 (5%) | 0.95 (1%) ✅ |
["inference", "optimization", "abstract_call_gf_by_type"] |
1.04 (5%) | 1.06 (1%) ❌ |
["inference", "optimization", "println(::QuoteNode)"] |
0.92 (5%) ✅ | 1.00 (1%) |
["simd", ("Cartesian", "axpy!", "Int32", 3, 64)] |
1.76 (20%) ❌ | 1.00 (1%) |
["simd", ("Cartesian", "axpy!", "Int64", 3, 32)] |
1.31 (20%) ❌ | 1.00 (1%) |
["simd", ("CartesianPartition", "axpy!", "Float32", 3, 31)] |
1.21 (20%) ❌ | 1.00 (1%) |
["simd", ("CartesianPartition", "manual_partition!", "Int32", 4, 31)] |
0.74 (20%) ✅ | 1.00 (1%) |
Here's a list of all the benchmark groups executed by this job:
["array", "index"]
["inference", "abstract interpretation"]
["inference"]
["inference", "optimization"]
["linalg", "arithmetic"]
["linalg", "blas"]
["linalg", "factorization"]
["linalg"]
["problem", "seismic"]
["simd"]
Julia Version 1.9.0-DEV.211
Commit 38304cd216 (2022-03-17 06:58 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 20.04.3 LTS
uname: Linux 5.4.0-94-generic #106-Ubuntu SMP Thu Jan 6 23:58:14 UTC 2022 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3754 MHz 227689 s 546 s 40134 s 53770447 s 0 s
#2 3522 MHz 4214627 s 399 s 169417 s 49700423 s 0 s
#3 3510 MHz 244985 s 351 s 29389 s 53804365 s 0 s
#4 3524 MHz 161522 s 348 s 28413 s 53645664 s 0 s
Memory: 31.32097625732422 GB (14873.21875 MB free)
Uptime: 5.41318388e6 sec
Load Avg: 1.08 1.02 1.01
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-13.0.1 (ORCJIT, haswell)
Threads: 1 on 4 virtual cores
Julia Version 1.9.0-DEV.209
Commit 1e64682b8b (2022-03-17 01:07 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 20.04.3 LTS
uname: Linux 5.4.0-94-generic #106-Ubuntu SMP Thu Jan 6 23:58:14 UTC 2022 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3500 MHz 228224 s 546 s 40210 s 53810533 s 0 s
#2 3484 MHz 4252128 s 399 s 170615 s 49702506 s 0 s
#3 3166 MHz 245929 s 351 s 29417 s 53844166 s 0 s
#4 3500 MHz 162242 s 348 s 28436 s 53685608 s 0 s
Memory: 31.32097625732422 GB (16345.1796875 MB free)
Uptime: 5.41726241e6 sec
Load Avg: 1.19 1.06 1.02
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-13.0.1 (ORCJIT, haswell)
Threads: 1 on 4 virtual cores