-
-
Notifications
You must be signed in to change notification settings - Fork 48
/
perf.py
200 lines (169 loc) · 4.51 KB
/
perf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from numpy import *
from numpy.random import rand, randn
from numpy.linalg import matrix_power
import sys
import time
import random
if sys.version_info < (3,):
range = xrange
## fibonacci ##
def fib(n):
if n<2:
return n
return fib(n-1)+fib(n-2)
## quicksort ##
def qsort_kernel(a, lo, hi):
i = lo
j = hi
while i < hi:
pivot = a[(lo+hi) // 2]
while i <= j:
while a[i] < pivot:
i += 1
while a[j] > pivot:
j -= 1
if i <= j:
a[i], a[j] = a[j], a[i]
i += 1
j -= 1
if lo < j:
qsort_kernel(a, lo, j)
lo = i
j = hi
return a
## randmatstat ##
def randmatstat(t):
n = 5
v = zeros(t)
w = zeros(t)
for i in range(t):
a = randn(n, n)
b = randn(n, n)
c = randn(n, n)
d = randn(n, n)
P = concatenate((a, b, c, d), axis=1)
Q = concatenate((concatenate((a, b), axis=1), concatenate((c, d), axis=1)), axis=0)
v[i] = trace(matrix_power(dot(P.T,P), 4))
w[i] = trace(matrix_power(dot(Q.T,Q), 4))
return (std(v)/mean(v), std(w)/mean(w))
## randmatmul ##
def randmatmul(n):
A = rand(n,n)
B = rand(n,n)
return dot(A,B)
## mandelbrot ##
def abs2(z):
return z.real*z.real + z.imag*z.imag
def mandel(z):
maxiter = 80
c = z
for n in range(maxiter):
if abs2(z) > 4:
return n
z = z*z + c
return maxiter
def mandelperf():
r1 = [-2. + 0.1*i for i in range(26)]
r2 = [-1. + 0.1*i for i in range(21)]
return [mandel(complex(r, i)) for r in r1 for i in r2]
def pisum():
sum = 0.0
for j in range(1, 501):
sum = 0.0
for k in range(1, 10001):
sum += 1.0/(k*k)
return sum
#### Is this single threaded?
# def pisumvec():
# return numpy.sum(1./(numpy.arange(1,10000)**2))
def parse_int(t):
for i in range(1,t):
n = random.randint(0,2**32-1)
s = hex(n)
#s = string(n, base = 16)
if s[-1]=='L':
s = s[0:-1]
m = int(s,16)
assert m == n
return n
def printfd(t):
f = open("/dev/null", "w")
for i in range(1,t):
f.write("{:d} {:d}\n".format(i, i+1))
f.close()
def print_perf(name, time):
print("python," + name + "," + str(time*1000))
## run tests ##
if __name__=="__main__":
mintrials = 5
assert fib(20) == 6765
tmin = float('inf')
for i in range(mintrials):
t = time.time()
f = fib(20)
t = time.time()-t
if t < tmin: tmin = t
print_perf("recursion_fibonacci", tmin)
tmin = float('inf')
for i in range(mintrials):
t = time.time()
n = parse_int(1000)
t = time.time()-t
if t < tmin: tmin = t
print_perf ("parse_integers", tmin)
assert sum(mandelperf()) == 14791
tmin = float('inf')
for i in range(mintrials):
t = time.time()
mandelperf()
t = time.time()-t
if t < tmin: tmin = t
print_perf ("userfunc_mandelbrot", tmin)
tmin = float('inf')
for i in range(mintrials):
lst = [ random.random() for i in range(1,5000) ]
t = time.time()
qsort_kernel(lst, 0, len(lst)-1)
t = time.time()-t
if t < tmin: tmin = t
print_perf ("recursion_quicksort", tmin)
assert abs(pisum()-1.644834071848065) < 1e-6
tmin = float('inf')
for i in range(mintrials):
t = time.time()
pisum()
t = time.time()-t
if t < tmin: tmin = t
print_perf ("iteration_pi_sum", tmin)
# assert abs(pisumvec()-1.644834071848065) < 1e-6
# tmin = float('inf')
# for i in range(mintrials):
# t = time.time()
# pisumvec()
# t = time.time()-t
# if t < tmin: tmin = t
# print_perf ("pi_sum_vec", tmin)
(s1, s2) = randmatstat(1000)
assert s1 > 0.5 and s1 < 1.0
tmin = float('inf')
for i in range(mintrials):
t = time.time()
randmatstat(1000)
t = time.time()-t
if t < tmin: tmin = t
print_perf ("matrix_statistics", tmin)
tmin = float('inf')
for i in range(mintrials):
t = time.time()
C = randmatmul(1000)
assert C[0,0] >= 0
t = time.time()-t
if t < tmin: tmin = t
print_perf ("matrix_multiply", tmin)
tmin = float('inf')
for i in range(mintrials):
t = time.time()
printfd(100000)
t = time.time()-t
if t < tmin: tmin = t
print_perf ("print_to_file", tmin)