-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
builtins.c
2040 lines (1911 loc) · 74.1 KB
/
builtins.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// This file is a part of Julia. License is MIT: https://julialang.org/license
/*
implementations of built-in functions
*/
#include "platform.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include <setjmp.h>
#include <sys/types.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#if defined(_OS_WINDOWS_)
#include <malloc.h>
#else
#include <unistd.h>
#endif
#include <ctype.h>
#include "julia.h"
#include "julia_internal.h"
#include "builtin_proto.h"
#include "intrinsics.h"
#include "julia_assert.h"
#ifdef __cplusplus
extern "C" {
#endif
// egal and object_id ---------------------------------------------------------
static int bits_equal(const void *a, const void *b, int sz) JL_NOTSAFEPOINT
{
switch (sz) {
case 1: return *(int8_t*)a == *(int8_t*)b;
// Let compiler constant folds the following.
case 2: return memcmp(a, b, 2) == 0;
case 4: return memcmp(a, b, 4) == 0;
case 8: return memcmp(a, b, 8) == 0;
default: return memcmp(a, b, sz) == 0;
}
}
// The frequently used jl_egal function deserves special attention when it
// comes to performance which is made challenging by the fact that the
// function has to handle quite a few different cases and because it is
// called recursively. To optimize performance many special cases are
// handle with separate comparisons which can dramatically reduce the run
// time of the function. The compiler can translate these simple tests
// with little effort, e.g., few registers are used.
//
// The complex cases require more effort and more registers to be translated
// efficiently. The effected cases include comparing tuples and fields. If
// the code to perform these operation would be inlined in the jl_egal
// function then the compiler would generate at the or close to the top of
// the function a prologue which saves all the callee-save registers and at
// the end the respective epilogue. The result is that even the fast cases
// are slowed down.
//
// The solution is to keep the code in jl_egal simple and split out the
// (more) complex cases into their own functions which are marked with
// NOINLINE.
static int NOINLINE compare_svec(jl_svec_t *a, jl_svec_t *b) JL_NOTSAFEPOINT
{
size_t i, l = jl_svec_len(a);
if (l != jl_svec_len(b))
return 0;
for (i = 0; i < l; i++) {
if (!jl_egal(jl_svecref(a, i), jl_svecref(b, i)))
return 0;
}
return 1;
}
// See comment above for an explanation of NOINLINE.
static int NOINLINE compare_fields(const jl_value_t *a, const jl_value_t *b, jl_datatype_t *dt) JL_NOTSAFEPOINT
{
size_t nf = jl_datatype_nfields(dt);
// npointers is used at end, but fetched here for locality with nfields.
int npointers = ((jl_datatype_t*)dt)->layout->npointers;
for (size_t f = 0; f < nf; f++) {
size_t offs = jl_field_offset(dt, f);
char *ao = (char*)a + offs;
char *bo = (char*)b + offs;
if (jl_field_isptr(dt, f)) {
// Save ptr recursion until the end -- only recurse if otherwise equal
// Note that we also skip comparing the pointers for null here, because
// null fields are rare so it can save CPU to delay this read too.
continue;
}
else {
jl_datatype_t *ft = (jl_datatype_t*)jl_field_type_concrete(dt, f);
if (jl_is_uniontype(ft)) {
uint8_t asel = ((uint8_t*)ao)[jl_field_size(dt, f) - 1];
uint8_t bsel = ((uint8_t*)bo)[jl_field_size(dt, f) - 1];
if (asel != bsel)
return 0;
ft = (jl_datatype_t*)jl_nth_union_component((jl_value_t*)ft, asel);
}
else if (ft->layout->first_ptr >= 0) {
// If the field is a inline immutable that can be can be undef
// we need to check to check for undef first since undef struct
// may have fields that are different but should still be treated as equal.
jl_value_t *ptra = ((jl_value_t**)ao)[ft->layout->first_ptr];
jl_value_t *ptrb = ((jl_value_t**)bo)[ft->layout->first_ptr];
if (ptra == NULL && ptrb == NULL) {
return 1;
}
}
if (!ft->layout->haspadding) {
if (!bits_equal(ao, bo, ft->size))
return 0;
}
else {
assert(jl_datatype_nfields(ft) > 0);
if (!compare_fields((jl_value_t*)ao, (jl_value_t*)bo, ft))
return 0;
}
}
}
// If we've gotten here, the objects are bitwise equal, besides their pointer fields.
// Now, we will recurse into jl_egal for the pointed-to elements, which might be
// arbitrarily expensive.
for (size_t p = 0; p < npointers; p++) {
size_t offs = jl_ptr_offset(dt, p);
jl_value_t *af = ((jl_value_t**)a)[offs];
jl_value_t *bf = ((jl_value_t**)b)[offs];
if (af != bf) {
if (af == NULL || bf == NULL)
return 0;
if (!jl_egal(af, bf))
return 0;
}
}
return 1;
}
static int egal_types(const jl_value_t *a, const jl_value_t *b, jl_typeenv_t *env, int tvar_names) JL_NOTSAFEPOINT
{
if (a == b)
return 1;
jl_datatype_t *dt = (jl_datatype_t*)jl_typeof(a);
if (dt != (jl_datatype_t*)jl_typeof(b))
return 0;
if (dt == jl_datatype_type) {
jl_datatype_t *dta = (jl_datatype_t*)a;
jl_datatype_t *dtb = (jl_datatype_t*)b;
if (dta->name != dtb->name)
return 0;
size_t i, l = jl_nparams(dta);
if (jl_nparams(dtb) != l)
return 0;
for (i = 0; i < l; i++) {
if (!egal_types(jl_tparam(dta, i), jl_tparam(dtb, i), env, tvar_names))
return 0;
}
return 1;
}
if (dt == jl_tvar_type) {
jl_typeenv_t *pe = env;
while (pe != NULL) {
if (pe->var == (jl_tvar_t*)a)
return pe->val == b;
pe = pe->prev;
}
return 0;
}
if (dt == jl_unionall_type) {
jl_unionall_t *ua = (jl_unionall_t*)a;
jl_unionall_t *ub = (jl_unionall_t*)b;
if (tvar_names && ua->var->name != ub->var->name)
return 0;
if (!(egal_types(ua->var->lb, ub->var->lb, env, tvar_names) && egal_types(ua->var->ub, ub->var->ub, env, tvar_names)))
return 0;
jl_typeenv_t e = { ua->var, (jl_value_t*)ub->var, env };
return egal_types(ua->body, ub->body, &e, tvar_names);
}
if (dt == jl_uniontype_type) {
return egal_types(((jl_uniontype_t*)a)->a, ((jl_uniontype_t*)b)->a, env, tvar_names) &&
egal_types(((jl_uniontype_t*)a)->b, ((jl_uniontype_t*)b)->b, env, tvar_names);
}
if (dt == jl_vararg_type) {
jl_vararg_t *vma = (jl_vararg_t*)a;
jl_vararg_t *vmb = (jl_vararg_t*)b;
jl_value_t *vmaT = vma->T ? vma->T : (jl_value_t*)jl_any_type;
jl_value_t *vmbT = vmb->T ? vmb->T : (jl_value_t*)jl_any_type;
if (!egal_types(vmaT, vmbT, env, tvar_names))
return 0;
if (vma->N && vmb->N)
return egal_types(vma->N, vmb->N, env, tvar_names);
return !vma->N && !vmb->N;
}
if (dt == jl_symbol_type)
return 0;
assert(!dt->name->mutabl);
return jl_egal__bits(a, b, dt);
}
JL_DLLEXPORT int jl_types_egal(jl_value_t *a, jl_value_t *b)
{
return egal_types(a, b, NULL, 0);
}
JL_DLLEXPORT int (jl_egal)(const jl_value_t *a JL_MAYBE_UNROOTED, const jl_value_t *b JL_MAYBE_UNROOTED) JL_NOTSAFEPOINT
{
// warning: a,b may NOT have been gc-rooted by the caller
return jl_egal(a, b);
}
JL_DLLEXPORT int jl_egal__unboxed(const jl_value_t *a JL_MAYBE_UNROOTED, const jl_value_t *b JL_MAYBE_UNROOTED, jl_datatype_t *dt) JL_NOTSAFEPOINT
{
// warning: a,b may NOT have been gc-rooted by the caller
return jl_egal__unboxed_(a, b, dt);
}
int jl_egal__special(const jl_value_t *a JL_MAYBE_UNROOTED, const jl_value_t *b JL_MAYBE_UNROOTED, jl_datatype_t *dt) JL_NOTSAFEPOINT
{
if (dt == jl_simplevector_type)
return compare_svec((jl_svec_t*)a, (jl_svec_t*)b);
if (dt == jl_datatype_type) {
jl_datatype_t *dta = (jl_datatype_t*)a;
jl_datatype_t *dtb = (jl_datatype_t*)b;
if (dta->name != dtb->name)
return 0;
if (dta->name != jl_tuple_typename && (dta->isconcretetype || dtb->isconcretetype))
return 0;
return compare_svec(dta->parameters, dtb->parameters);
}
if (dt == jl_string_type) {
size_t l = jl_string_len(a);
if (jl_string_len(b) != l)
return 0;
return !memcmp(jl_string_data(a), jl_string_data(b), l);
}
assert(0 && "unreachable");
return 0;
}
int jl_egal__bits(const jl_value_t *a JL_MAYBE_UNROOTED, const jl_value_t *b JL_MAYBE_UNROOTED, jl_datatype_t *dt) JL_NOTSAFEPOINT
{
size_t sz = jl_datatype_size(dt);
if (sz == 0)
return 1;
size_t nf = jl_datatype_nfields(dt);
if (nf == 0 || !dt->layout->haspadding)
return bits_equal(a, b, sz);
if (dt == jl_unionall_type)
return egal_types(a, b, NULL, 1);
return compare_fields(a, b, dt);
}
// object_id ------------------------------------------------------------------
static uintptr_t bits_hash(const void *b, size_t sz) JL_NOTSAFEPOINT
{
switch (sz) {
case 1: return int32hash(*(const int8_t*)b);
case 2: return int32hash(jl_load_unaligned_i16(b));
case 4: return int32hash(jl_load_unaligned_i32(b));
#ifdef _P64
case 8: return int64hash(jl_load_unaligned_i64(b));
#else
case 8: return int64to32hash(jl_load_unaligned_i64(b));
#endif
default:
#ifdef _P64
return memhash((const char*)b, sz);
#else
return memhash32((const char*)b, sz);
#endif
}
}
static uintptr_t NOINLINE hash_svec(jl_svec_t *v) JL_NOTSAFEPOINT
{
uintptr_t h = 0;
size_t i, l = jl_svec_len(v);
for (i = 0; i < l; i++) {
jl_value_t *x = jl_svecref(v, i);
uintptr_t u = (x == NULL) ? 0 : jl_object_id(x);
h = bitmix(h, u);
}
return h;
}
static uintptr_t immut_id_(jl_datatype_t *dt, jl_value_t *v, uintptr_t h) JL_NOTSAFEPOINT;
typedef struct _varidx {
jl_tvar_t *var;
struct _varidx *prev;
} jl_varidx_t;
static uintptr_t type_object_id_(jl_value_t *v, jl_varidx_t *env) JL_NOTSAFEPOINT
{
if (v == NULL)
return 0;
jl_datatype_t *tv = (jl_datatype_t*)jl_typeof(v);
if (tv == jl_tvar_type) {
jl_varidx_t *pe = env;
int i = 0;
while (pe != NULL) {
if (pe->var == (jl_tvar_t*)v)
return (i<<8) + 42;
i++;
pe = pe->prev;
}
return inthash((uintptr_t)v);
}
if (tv == jl_uniontype_type) {
return bitmix(bitmix(jl_object_id((jl_value_t*)tv),
type_object_id_(((jl_uniontype_t*)v)->a, env)),
type_object_id_(((jl_uniontype_t*)v)->b, env));
}
if (tv == jl_unionall_type) {
jl_unionall_t *u = (jl_unionall_t*)v;
uintptr_t h = u->var->name->hash;
h = bitmix(h, type_object_id_(u->var->lb, env));
h = bitmix(h, type_object_id_(u->var->ub, env));
jl_varidx_t e = { u->var, env };
return bitmix(h, type_object_id_(u->body, &e));
}
if (tv == jl_datatype_type) {
jl_datatype_t *dtv = (jl_datatype_t*)v;
if (dtv->isconcretetype)
return dtv->hash;
uintptr_t h = ~dtv->name->hash;
size_t i, l = jl_nparams(v);
for (i = 0; i < l; i++) {
h = bitmix(h, type_object_id_(jl_tparam(v, i), env));
}
return h;
}
if (tv == jl_vararg_type) {
jl_vararg_t *vm = (jl_vararg_t*)v;
jl_value_t *t = vm->T ? vm->T : (jl_value_t*)jl_any_type;
jl_value_t *n = vm->N ? vm->N : jl_nothing;
return bitmix(type_object_id_(t, env),
type_object_id_(n, env));
}
if (tv == jl_symbol_type)
return ((jl_sym_t*)v)->hash;
assert(!tv->name->mutabl);
return immut_id_(tv, v, tv->hash);
}
static uintptr_t immut_id_(jl_datatype_t *dt, jl_value_t *v, uintptr_t h) JL_NOTSAFEPOINT
{
size_t sz = jl_datatype_size(dt);
if (sz == 0)
return ~h;
size_t f, nf = jl_datatype_nfields(dt);
if (nf == 0 || (!dt->layout->haspadding && dt->layout->npointers == 0)) {
// operate element-wise if there are unused bits inside,
// otherwise just take the whole data block at once
// a few select pointers (notably symbol) also have special hash values
// which may affect the stability of the objectid hash, even though
// they don't affect egal comparison
return bits_hash(v, sz) ^ h;
}
if (dt == jl_unionall_type)
return type_object_id_(v, NULL);
for (f = 0; f < nf; f++) {
size_t offs = jl_field_offset(dt, f);
char *vo = (char*)v + offs;
uintptr_t u;
if (jl_field_isptr(dt, f)) {
jl_value_t *f = *(jl_value_t**)vo;
u = (f == NULL) ? 0 : jl_object_id(f);
}
else {
jl_datatype_t *fieldtype = (jl_datatype_t*)jl_field_type_concrete(dt, f);
if (jl_is_uniontype(fieldtype)) {
uint8_t sel = ((uint8_t*)vo)[jl_field_size(dt, f) - 1];
fieldtype = (jl_datatype_t*)jl_nth_union_component((jl_value_t*)fieldtype, sel);
}
assert(jl_is_datatype(fieldtype) && !fieldtype->name->abstract && !fieldtype->name->mutabl);
int32_t first_ptr = fieldtype->layout->first_ptr;
if (first_ptr >= 0 && ((jl_value_t**)vo)[first_ptr] == NULL) {
// If the field is a inline immutable that can be can be undef
// we need to check to check for undef first since undef struct
// may have fields that are different but should still be treated as equal.
u = 0;
}
else {
u = immut_id_(fieldtype, (jl_value_t*)vo, 0);
}
}
h = bitmix(h, u);
}
return h;
}
static uintptr_t NOINLINE jl_object_id__cold(jl_datatype_t *dt, jl_value_t *v) JL_NOTSAFEPOINT
{
if (dt == jl_simplevector_type)
return hash_svec((jl_svec_t*)v);
if (dt == jl_datatype_type) {
jl_datatype_t *dtv = (jl_datatype_t*)v;
uintptr_t h = ~dtv->name->hash;
return bitmix(h, hash_svec(dtv->parameters));
}
if (dt == jl_string_type) {
#ifdef _P64
return memhash_seed(jl_string_data(v), jl_string_len(v), 0xedc3b677);
#else
return memhash32_seed(jl_string_data(v), jl_string_len(v), 0xedc3b677);
#endif
}
if (dt->name->mutabl)
return inthash((uintptr_t)v);
return immut_id_(dt, v, dt->hash);
}
JL_DLLEXPORT inline uintptr_t jl_object_id_(jl_value_t *tv, jl_value_t *v) JL_NOTSAFEPOINT
{
jl_datatype_t *dt = (jl_datatype_t*)tv;
if (dt == jl_symbol_type)
return ((jl_sym_t*)v)->hash;
if (dt == jl_typename_type)
return ((jl_typename_t*)v)->hash;
if (dt == jl_datatype_type) {
jl_datatype_t *dtv = (jl_datatype_t*)v;
if (dtv->isconcretetype)
return dtv->hash;
}
return jl_object_id__cold(dt, v);
}
JL_DLLEXPORT uintptr_t jl_object_id(jl_value_t *v) JL_NOTSAFEPOINT
{
return jl_object_id_(jl_typeof(v), v);
}
// eq hash table --------------------------------------------------------------
#include "iddict.c"
// object model and type primitives -------------------------------------------
JL_CALLABLE(jl_f_is)
{
JL_NARGS(===, 2, 2);
return jl_egal(args[0], args[1]) ? jl_true : jl_false;
}
JL_CALLABLE(jl_f_typeof)
{
JL_NARGS(typeof, 1, 1);
return jl_typeof(args[0]);
}
JL_CALLABLE(jl_f_sizeof)
{
JL_NARGS(sizeof, 1, 1);
jl_value_t *x = args[0];
if (jl_is_unionall(x) || jl_is_uniontype(x)) {
x = jl_unwrap_unionall(x);
size_t elsize = 0;
int isinline = jl_uniontype_size(x, &elsize);
if (isinline)
return jl_box_long(elsize);
if (!jl_is_datatype(x))
jl_error("Argument is an abstract type and does not have a definite size.");
}
if (jl_is_datatype(x)) {
jl_datatype_t *dx = (jl_datatype_t*)x;
if (dx->layout == NULL) {
if (dx->name->abstract)
jl_errorf("Abstract type %s does not have a definite size.", jl_symbol_name(dx->name->name));
else
jl_errorf("Argument is an incomplete %s type and does not have a definite size.", jl_symbol_name(dx->name->name));
}
if (jl_is_layout_opaque(dx->layout))
jl_errorf("Type %s does not have a definite size.", jl_symbol_name(dx->name->name));
return jl_box_long(jl_datatype_size(x));
}
if (x == jl_bottom_type)
jl_error("The empty type does not have a definite size since it does not have instances.");
if (jl_is_array(x)) {
return jl_box_long(jl_array_len(x) * ((jl_array_t*)x)->elsize);
}
if (jl_is_string(x))
return jl_box_long(jl_string_len(x));
if (jl_is_symbol(x))
return jl_box_long(strlen(jl_symbol_name((jl_sym_t*)x)));
if (jl_is_svec(x))
return jl_box_long((1+jl_svec_len(x))*sizeof(void*));
jl_datatype_t *dt = (jl_datatype_t*)jl_typeof(x);
assert(jl_is_datatype(dt));
assert(!dt->name->abstract);
return jl_box_long(jl_datatype_size(dt));
}
JL_CALLABLE(jl_f_issubtype)
{
JL_NARGS(<:, 2, 2);
jl_value_t *a = args[0], *b = args[1];
JL_TYPECHK(<:, type, a);
JL_TYPECHK(<:, type, b);
return (jl_subtype(a,b) ? jl_true : jl_false);
}
JL_CALLABLE(jl_f_isa)
{
JL_NARGS(isa, 2, 2);
JL_TYPECHK(isa, type, args[1]);
return (jl_isa(args[0],args[1]) ? jl_true : jl_false);
}
JL_CALLABLE(jl_f_typeassert)
{
JL_NARGS(typeassert, 2, 2);
JL_TYPECHK(typeassert, type, args[1]);
if (!jl_isa(args[0],args[1]))
jl_type_error("typeassert", args[1], args[0]);
return args[0];
}
JL_CALLABLE(jl_f_throw)
{
JL_NARGS(throw, 1, 1);
jl_throw(args[0]);
return jl_nothing;
}
JL_CALLABLE(jl_f_ifelse)
{
JL_NARGS(ifelse, 3, 3);
JL_TYPECHK(ifelse, bool, args[0]);
return (args[0] == jl_false ? args[2] : args[1]);
}
// apply ----------------------------------------------------------------------
static NOINLINE jl_svec_t *_copy_to(size_t newalloc, jl_value_t **oldargs, size_t oldalloc)
{
size_t j;
jl_svec_t *newheap = jl_alloc_svec_uninit(newalloc);
jl_value_t **newargs = jl_svec_data(newheap);
for (j = 0; j < oldalloc; j++)
newargs[j] = oldargs[j];
for (; j < newalloc; j++)
newargs[j] = NULL;
return newheap;
}
STATIC_INLINE void _grow_to(jl_value_t **root, jl_value_t ***oldargs, jl_svec_t **arg_heap, size_t *n_alloc, size_t newalloc, size_t extra)
{
size_t oldalloc = *n_alloc;
if (oldalloc >= newalloc)
return;
if (extra)
// grow by an extra 50% if newalloc is still only a guess
newalloc += oldalloc / 2 + 16;
JL_GC_PROMISE_ROOTED(*oldargs);
jl_svec_t *newheap = _copy_to(newalloc, *oldargs, oldalloc);
*root = (jl_value_t*)newheap;
*arg_heap = newheap;
*oldargs = jl_svec_data(newheap);
*n_alloc = newalloc;
}
static jl_value_t *do_apply( jl_value_t **args, uint32_t nargs, jl_value_t *iterate)
{
jl_function_t *f = args[0];
if (nargs == 2) {
// some common simple cases
if (f == jl_builtin_svec) {
if (jl_is_svec(args[1]))
return args[1];
if (jl_is_array(args[1])) {
size_t n = jl_array_len(args[1]);
jl_svec_t *t = jl_alloc_svec(n);
JL_GC_PUSH1(&t);
for (size_t i = 0; i < n; i++) {
jl_svecset(t, i, jl_arrayref((jl_array_t*)args[1], i));
}
JL_GC_POP();
return (jl_value_t*)t;
}
}
else if (f == jl_builtin_tuple && jl_is_tuple(args[1])) {
return args[1];
}
}
// estimate how many real arguments we appear to have
size_t precount = 1;
size_t extra = 0;
size_t i;
for (i = 1; i < nargs; i++) {
if (jl_is_svec(args[i])) {
precount += jl_svec_len(args[i]);
}
else if (jl_is_tuple(args[i]) || jl_is_namedtuple(args[i])) {
precount += jl_nfields(args[i]);
}
else if (jl_is_array(args[i])) {
precount += jl_array_len(args[i]);
}
else {
extra += 1;
}
}
if (extra && iterate == NULL) {
jl_undefined_var_error(jl_symbol("iterate"));
}
// allocate space for the argument array and gc roots for it
// based on our previous estimates
// use the stack if we have a good estimate that it is small
// otherwise, use the heap and grow it incrementally
// and if there are any extra elements, we'll also need a couple extra roots
int onstack = (precount + 32 * extra < jl_page_size / sizeof(jl_value_t*));
size_t stackalloc = onstack ? (precount + 4 * extra + (extra ? 16 : 0)) : 1;
size_t n_alloc;
jl_value_t **roots;
JL_GC_PUSHARGS(roots, stackalloc + (extra ? 2 : 0));
jl_value_t **newargs;
jl_svec_t *arg_heap = NULL;
if (onstack) {
newargs = roots;
n_alloc = stackalloc;
}
else {
// put arguments on the heap if there are too many
newargs = NULL;
n_alloc = precount;
if (extra)
// grow by an extra 50% if newalloc is still only a guess
n_alloc += n_alloc / 2 + 16;
arg_heap = jl_alloc_svec(n_alloc);
roots[0] = (jl_value_t*)arg_heap;
newargs = jl_svec_data(arg_heap);
}
newargs[0] = f;
precount -= 1;
size_t n = 1;
for (i = 1; i < nargs; i++) {
jl_value_t *ai = args[i];
if (jl_is_svec(ai)) {
jl_svec_t *t = (jl_svec_t*)ai;
size_t j, al = jl_svec_len(t);
precount = (precount > al) ? precount - al : 0;
_grow_to(&roots[0], &newargs, &arg_heap, &n_alloc, n + precount + al, extra);
assert(newargs != NULL); // inform GCChecker that we didn't write a NULL here
for (j = 0; j < al; j++) {
newargs[n++] = jl_svecref(t, j);
// GC Note: here we assume that the return value of `jl_svecref`
// will not be young if `arg_heap` becomes old
// since they are allocated before `arg_heap`. Otherwise,
// we need to add write barrier for !onstack
}
}
else if (jl_is_tuple(ai) || jl_is_namedtuple(ai)) {
size_t j, al = jl_nfields(ai);
precount = (precount > al) ? precount - al : 0;
_grow_to(&roots[0], &newargs, &arg_heap, &n_alloc, n + precount + al, extra);
assert(newargs != NULL); // inform GCChecker that we didn't write a NULL here
for (j = 0; j < al; j++) {
// jl_fieldref may allocate.
newargs[n++] = jl_fieldref(ai, j);
if (arg_heap)
jl_gc_wb(arg_heap, newargs[n - 1]);
}
}
else if (jl_is_array(ai)) {
jl_array_t *aai = (jl_array_t*)ai;
size_t j, al = jl_array_len(aai);
precount = (precount > al) ? precount - al : 0;
_grow_to(&roots[0], &newargs, &arg_heap, &n_alloc, n + precount + al, extra);
assert(newargs != NULL); // inform GCChecker that we didn't write a NULL here
if (aai->flags.ptrarray) {
for (j = 0; j < al; j++) {
jl_value_t *arg = jl_array_ptr_ref(aai, j);
// apply with array splatting may have embedded NULL value (#11772)
if (__unlikely(arg == NULL))
jl_throw(jl_undefref_exception);
newargs[n++] = arg;
if (arg_heap)
jl_gc_wb(arg_heap, arg);
}
}
else {
for (j = 0; j < al; j++) {
newargs[n++] = jl_arrayref(aai, j);
if (arg_heap)
jl_gc_wb(arg_heap, newargs[n - 1]);
}
}
}
else {
assert(extra > 0);
jl_value_t *args[2];
args[0] = ai;
jl_value_t *next = jl_apply_generic(iterate, args, 1);
while (next != jl_nothing) {
roots[stackalloc] = next;
jl_value_t *value = jl_get_nth_field_checked(next, 0);
roots[stackalloc + 1] = value;
jl_value_t *state = jl_get_nth_field_checked(next, 1);
roots[stackalloc] = state;
_grow_to(&roots[0], &newargs, &arg_heap, &n_alloc, n + precount + 1, extra);
JL_GC_ASSERT_LIVE(value);
newargs[n++] = value;
if (arg_heap)
jl_gc_wb(arg_heap, value);
roots[stackalloc + 1] = NULL;
JL_GC_ASSERT_LIVE(state);
args[1] = state;
next = jl_apply_generic(iterate, args, 2);
}
roots[stackalloc] = NULL;
extra -= 1;
}
}
if (arg_heap) {
// optimization: keep only the first root, free the others
#ifndef __clang_gcanalyzer__
((void**)roots)[-2] = (void*)JL_GC_ENCODE_PUSHARGS(1);
#endif
}
jl_value_t *result = jl_apply(newargs, n);
JL_GC_POP();
return result;
}
JL_CALLABLE(jl_f__apply_iterate)
{
JL_NARGSV(_apply_iterate, 2);
return do_apply(args + 1, nargs - 1, args[0]);
}
// this is like `_apply`, but with quasi-exact checks to make sure it is pure
JL_CALLABLE(jl_f__apply_pure)
{
jl_task_t *ct = jl_current_task;
int last_in = ct->ptls->in_pure_callback;
jl_value_t *ret = NULL;
JL_TRY {
ct->ptls->in_pure_callback = 1;
// because this function was declared pure,
// we should be allowed to run it in any world
// so we run it in the newest world;
// because, why not :)
// and `promote` works better this way
size_t last_age = ct->world_age;
ct->world_age = jl_atomic_load_acquire(&jl_world_counter);
ret = do_apply(args, nargs, NULL);
ct->world_age = last_age;
ct->ptls->in_pure_callback = last_in;
}
JL_CATCH {
ct->ptls->in_pure_callback = last_in;
jl_rethrow();
}
return ret;
}
// this is like a regular call, but always runs in the newest world
JL_CALLABLE(jl_f__call_latest)
{
jl_task_t *ct = jl_current_task;
size_t last_age = ct->world_age;
if (!ct->ptls->in_pure_callback)
ct->world_age = jl_atomic_load_acquire(&jl_world_counter);
jl_value_t *ret = jl_apply(args, nargs);
ct->world_age = last_age;
return ret;
}
// Like call_in_world, but runs in the specified world.
// If world > jl_atomic_load_acquire(&jl_world_counter), run in the latest world.
JL_CALLABLE(jl_f__call_in_world)
{
JL_NARGSV(_apply_in_world, 2);
jl_task_t *ct = jl_current_task;
size_t last_age = ct->world_age;
JL_TYPECHK(_apply_in_world, ulong, args[0]);
size_t world = jl_unbox_ulong(args[0]);
if (!ct->ptls->in_pure_callback) {
ct->world_age = jl_atomic_load_acquire(&jl_world_counter);
if (ct->world_age > world)
ct->world_age = world;
}
jl_value_t *ret = jl_apply(&args[1], nargs - 1);
ct->world_age = last_age;
return ret;
}
JL_CALLABLE(jl_f__call_in_world_total)
{
JL_NARGSV(_call_in_world_total, 2);
JL_TYPECHK(_apply_in_world, ulong, args[0]);
jl_task_t *ct = jl_current_task;
int last_in = ct->ptls->in_pure_callback;
jl_value_t *ret = NULL;
size_t last_age = ct->world_age;
JL_TRY {
ct->ptls->in_pure_callback = 1;
size_t world = jl_unbox_ulong(args[0]);
ct->world_age = jl_atomic_load_acquire(&jl_world_counter);
if (ct->world_age > world)
ct->world_age = world;
ret = jl_apply(&args[1], nargs - 1);
ct->world_age = last_age;
ct->ptls->in_pure_callback = last_in;
}
JL_CATCH {
ct->ptls->in_pure_callback = last_in;
jl_rethrow();
}
return ret;
}
// tuples ---------------------------------------------------------------------
JL_CALLABLE(jl_f_tuple)
{
size_t i;
if (nargs == 0)
return (jl_value_t*)jl_emptytuple;
jl_datatype_t *tt = jl_inst_arg_tuple_type(args[0], &args[1], nargs, 0);
JL_GC_PROMISE_ROOTED(tt); // it is a concrete type
if (tt->instance != NULL)
return tt->instance;
jl_task_t *ct = jl_current_task;
jl_value_t *jv = jl_gc_alloc(ct->ptls, jl_datatype_size(tt), tt);
for (i = 0; i < nargs; i++)
set_nth_field(tt, jv, i, args[i], 0);
return jv;
}
JL_CALLABLE(jl_f_svec)
{
size_t i;
if (nargs == 0)
return (jl_value_t*)jl_emptysvec;
jl_svec_t *t = jl_alloc_svec_uninit(nargs);
for (i = 0; i < nargs; i++) {
jl_svecset(t, i, args[i]);
}
return (jl_value_t*)t;
}
// struct operations ------------------------------------------------------------
enum jl_memory_order jl_get_atomic_order(jl_sym_t *order, char loading, char storing)
{
if (order == jl_not_atomic_sym)
return jl_memory_order_notatomic;
if (order == jl_unordered_sym && (loading ^ storing))
return jl_memory_order_unordered;
if (order == jl_monotonic_sym && (loading || storing))
return jl_memory_order_monotonic;
if (order == jl_acquire_sym && loading)
return jl_memory_order_acquire;
if (order == jl_release_sym && storing)
return jl_memory_order_release;
if (order == jl_acquire_release_sym && loading && storing)
return jl_memory_order_acq_rel;
if (order == jl_sequentially_consistent_sym)
return jl_memory_order_seq_cst;
return jl_memory_order_invalid;
}
enum jl_memory_order jl_get_atomic_order_checked(jl_sym_t *order, char loading, char storing)
{
enum jl_memory_order mo = jl_get_atomic_order(order, loading, storing);
if (mo < 0) // invalid
jl_atomic_error("invalid atomic ordering");
return mo;
}
static inline size_t get_checked_fieldindex(const char *name, jl_datatype_t *st, jl_value_t *v, jl_value_t *arg, int mutabl)
{
if (mutabl) {
if (st == jl_module_type)
jl_error("cannot assign variables in other modules");
if (!st->name->mutabl)
jl_errorf("%s: immutable struct of type %s cannot be changed", name, jl_symbol_name(st->name->name));
}
size_t idx;
if (jl_is_long(arg)) {
idx = jl_unbox_long(arg) - 1;
if (idx >= jl_datatype_nfields(st))
jl_bounds_error(v, arg);
}
else {
JL_TYPECHKS(name, symbol, arg);
idx = jl_field_index(st, (jl_sym_t*)arg, 1);
}
if (mutabl && jl_field_isconst(st, idx)) {
jl_errorf("%s: const field .%s of type %s cannot be changed", name,
jl_symbol_name((jl_sym_t*)jl_svec_ref(jl_field_names(st), idx)), jl_symbol_name(st->name->name));
}
return idx;
}
JL_CALLABLE(jl_f_getfield)
{
enum jl_memory_order order = jl_memory_order_unspecified;
JL_NARGS(getfield, 2, 4);
if (nargs == 4) {
JL_TYPECHK(getfield, symbol, args[2]);
JL_TYPECHK(getfield, bool, args[3]);
order = jl_get_atomic_order_checked((jl_sym_t*)args[2], 1, 0);
}
else if (nargs == 3) {
if (!jl_is_bool(args[2])) {
JL_TYPECHK(getfield, symbol, args[2]);
order = jl_get_atomic_order_checked((jl_sym_t*)args[2], 1, 0);
}
}
jl_value_t *v = args[0];
jl_value_t *vt = jl_typeof(v);
if (vt == (jl_value_t*)jl_module_type)
return jl_f_getglobal(NULL, args, 2); // we just ignore the atomic order and boundschecks
jl_datatype_t *st = (jl_datatype_t*)vt;
size_t idx = get_checked_fieldindex("getfield", st, v, args[1], 0);
int isatomic = jl_field_isatomic(st, idx);
if (!isatomic && order != jl_memory_order_notatomic && order != jl_memory_order_unspecified)
jl_atomic_error("getfield: non-atomic field cannot be accessed atomically");
if (isatomic && order == jl_memory_order_notatomic)
jl_atomic_error("getfield: atomic field cannot be accessed non-atomically");
v = jl_get_nth_field_checked(v, idx);
if (order >= jl_memory_order_acq_rel || order == jl_memory_order_acquire)
jl_fence(); // `v` already had at least consume ordering
return v;
}
JL_CALLABLE(jl_f_setfield)
{
enum jl_memory_order order = jl_memory_order_notatomic;
JL_NARGS(setfield!, 3, 4);
if (nargs == 4) {
JL_TYPECHK(setfield!, symbol, args[3]);
order = jl_get_atomic_order_checked((jl_sym_t*)args[3], 0, 1);
}
jl_value_t *v = args[0];
jl_datatype_t *st = (jl_datatype_t*)jl_typeof(v);
size_t idx = get_checked_fieldindex("setfield!", st, v, args[1], 1);
int isatomic = !!jl_field_isatomic(st, idx);
if (isatomic == (order == jl_memory_order_notatomic))
jl_atomic_error(isatomic ? "setfield!: atomic field cannot be written non-atomically"
: "setfield!: non-atomic field cannot be written atomically");
jl_value_t *ft = jl_field_type_concrete(st, idx);
if (!jl_isa(args[2], ft))
jl_type_error("setfield!", ft, args[2]);
if (order >= jl_memory_order_acq_rel || order == jl_memory_order_release)
jl_fence(); // `st->[idx]` will have at least relaxed ordering
set_nth_field(st, v, idx, args[2], isatomic);
return args[2];
}
JL_CALLABLE(jl_f_swapfield)
{
enum jl_memory_order order = jl_memory_order_notatomic;
JL_NARGS(swapfield!, 3, 4);
if (nargs == 4) {
JL_TYPECHK(swapfield!, symbol, args[3]);
order = jl_get_atomic_order_checked((jl_sym_t*)args[3], 1, 1);
}
jl_value_t *v = args[0];
jl_datatype_t *st = (jl_datatype_t*)jl_typeof(v);
size_t idx = get_checked_fieldindex("swapfield!", st, v, args[1], 1);
int isatomic = !!jl_field_isatomic(st, idx);
if (isatomic == (order == jl_memory_order_notatomic))
jl_atomic_error(isatomic ? "swapfield!: atomic field cannot be written non-atomically"
: "swapfield!: non-atomic field cannot be written atomically");
v = swap_nth_field(st, v, idx, args[2], isatomic); // always seq_cst, if isatomic needed at all
return v;
}
JL_CALLABLE(jl_f_modifyfield)
{
enum jl_memory_order order = jl_memory_order_notatomic;
JL_NARGS(modifyfield!, 4, 5);
if (nargs == 5) {
JL_TYPECHK(modifyfield!, symbol, args[4]);
order = jl_get_atomic_order_checked((jl_sym_t*)args[4], 1, 1);
}
jl_value_t *v = args[0];
jl_datatype_t *st = (jl_datatype_t*)jl_typeof(v);
size_t idx = get_checked_fieldindex("modifyfield!", st, v, args[1], 1);
int isatomic = !!jl_field_isatomic(st, idx);
if (isatomic == (order == jl_memory_order_notatomic))
jl_atomic_error(isatomic ? "modifyfield!: atomic field cannot be written non-atomically"
: "modifyfield!: non-atomic field cannot be written atomically");
v = modify_nth_field(st, v, idx, args[2], args[3], isatomic); // always seq_cst, if isatomic needed at all
return v;
}
JL_CALLABLE(jl_f_replacefield)
{
enum jl_memory_order success_order = jl_memory_order_notatomic;
JL_NARGS(replacefield!, 4, 6);
if (nargs >= 5) {