-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
basedocs.jl
1915 lines (1481 loc) · 39.5 KB
/
basedocs.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. License is MIT: https://julialang.org/license
module BaseDocs
@nospecialize # don't specialize on any arguments of the methods declared herein
struct Keyword
name::Symbol
end
macro kw_str(text)
return Keyword(Symbol(text))
end
"""
**Welcome to Julia $(string(VERSION)).** The full manual is available at
https://docs.julialang.org/
as well as many great tutorials and learning resources:
https://julialang.org/learning/
For help on a specific function or macro, type `?` followed
by its name, e.g. `?cos`, or `?@time`, and press enter.
Type `;` to enter shell mode, `]` to enter package mode.
"""
kw"help", kw"?", kw"julia", kw""
"""
using
`using Foo` will load the module or package `Foo` and make its [`export`](@ref)ed names
available for direct use. Names can also be used via dot syntax (e.g. `Foo.foo` to access
the name `foo`), whether they are `export`ed or not.
See the [manual section about modules](@ref modules) for details.
"""
kw"using"
"""
import
`import Foo` will load the module or package `Foo`.
Names from the imported `Foo` module can be accessed with dot syntax
(e.g. `Foo.foo` to access the name `foo`).
See the [manual section about modules](@ref modules) for details.
"""
kw"import"
"""
export
`export` is used within modules to tell Julia which functions should be
made available to the user. For example: `export foo` makes the name
`foo` available when [`using`](@ref) the module.
See the [manual section about modules](@ref modules) for details.
"""
kw"export"
"""
abstract type
`abstract type` declares a type that cannot be instantiated, and serves only as a node in the
type graph, thereby describing sets of related concrete types: those concrete types
which are their descendants. Abstract types form the conceptual hierarchy which makes
Julia’s type system more than just a collection of object implementations. For example:
```julia
abstract type Number end
abstract type Real <: Number end
```
[`Number`](@ref) has no supertype, whereas [`Real`](@ref) is an abstract subtype of `Number`.
"""
kw"abstract type"
"""
module
`module` declares a `Module`, which is a separate global variable workspace. Within a
module, you can control which names from other modules are visible (via importing), and
specify which of your names are intended to be public (via exporting).
Modules allow you to create top-level definitions without worrying about name conflicts
when your code is used together with somebody else’s.
See the [manual section about modules](@ref modules) for more details.
# Examples
```julia
module Foo
import Base.show
export MyType, foo
struct MyType
x
end
bar(x) = 2x
foo(a::MyType) = bar(a.x) + 1
show(io::IO, a::MyType) = print(io, "MyType \$(a.x)")
end
```
"""
kw"module"
"""
baremodule
`baremodule` declares a module that does not contain `using Base`
or a definition of `eval`. It does still import `Core`.
"""
kw"baremodule"
"""
primitive type
`primitive type` declares a concrete type whose data consists only of a series of bits. Classic
examples of primitive types are integers and floating-point values. Some example built-in
primitive type declarations:
```julia
primitive type Char 32 end
primitive type Bool <: Integer 8 end
```
The number after the name indicates how many bits of storage the type requires. Currently,
only sizes that are multiples of 8 bits are supported.
The [`Bool`](@ref) declaration shows how a primitive type can be optionally
declared to be a subtype of some supertype.
"""
kw"primitive type"
"""
macro
`macro` defines a method to include generated code in the final body of a program. A
macro maps a tuple of arguments to a returned expression, and the resulting expression
is compiled directly rather than requiring a runtime `eval` call. Macro arguments may
include expressions, literal values, and symbols. For example:
# Examples
```jldoctest
julia> macro sayhello(name)
return :( println("Hello, ", \$name, "!") )
end
@sayhello (macro with 1 method)
julia> @sayhello "Charlie"
Hello, Charlie!
```
"""
kw"macro"
"""
local
`local` introduces a new local variable.
See the [manual section on variable scoping](@ref scope-of-variables) for more information.
# Examples
```jldoctest
julia> function foo(n)
x = 0
for i = 1:n
local x # introduce a loop-local x
x = i
end
x
end
foo (generic function with 1 method)
julia> foo(10)
0
```
"""
kw"local"
"""
global
`global x` makes `x` in the current scope and its inner scopes refer to the global
variable of that name.
See the [manual section on variable scoping](@ref scope-of-variables) for more information.
# Examples
```jldoctest
julia> z = 3
3
julia> function foo()
global z = 6 # use the z variable defined outside foo
end
foo (generic function with 1 method)
julia> foo()
6
julia> z
6
```
"""
kw"global"
"""
let
`let` statements allocate new variable bindings each time they run. Whereas an
assignment modifies an existing value location, `let` creates new locations. This
difference is only detectable in the case of variables that outlive their scope via
closures. The `let` syntax accepts a comma-separated series of assignments and variable
names:
```julia
let var1 = value1, var2, var3 = value3
code
end
```
The assignments are evaluated in order, with each right-hand side evaluated in the scope
before the new variable on the left-hand side has been introduced. Therefore it makes
sense to write something like `let x = x`, since the two `x` variables are distinct and
have separate storage.
"""
kw"let"
"""
quote
`quote` creates multiple expression objects in a block without using the explicit `Expr`
constructor. For example:
```julia
ex = quote
x = 1
y = 2
x + y
end
```
Unlike the other means of quoting, `:( ... )`, this form introduces `QuoteNode` elements
to the expression tree, which must be considered when directly manipulating the tree.
For other purposes, `:( ... )` and `quote .. end` blocks are treated identically.
"""
kw"quote"
"""
'
The conjugate transposition operator, see [`adjoint`](@ref).
# Examples
```jldoctest
julia> A = [1.0 -2.0im; 4.0im 2.0]
2×2 Array{Complex{Float64},2}:
1.0+0.0im -0.0-2.0im
0.0+4.0im 2.0+0.0im
julia> A'
2×2 Array{Complex{Float64},2}:
1.0-0.0im 0.0-4.0im
-0.0+2.0im 2.0-0.0im
```
"""
kw"'"
"""
const
`const` is used to declare global variables whose values will not change. In almost all code
(and particularly performance sensitive code) global variables should be declared
constant in this way.
```julia
const x = 5
```
Multiple variables can be declared within a single `const`:
```julia
const y, z = 7, 11
```
Note that `const` only applies to one `=` operation, therefore `const x = y = 1`
declares `x` to be constant but not `y`. On the other hand, `const x = const y = 1`
declares both `x` and `y` constant.
Note that "constant-ness" does not extend into mutable containers; only the
association between a variable and its value is constant.
If `x` is an array or dictionary (for example) you can still modify, add, or remove elements.
In some cases changing the value of a `const` variable gives a warning instead of
an error.
However, this can produce unpredictable behavior or corrupt the state of your program,
and so should be avoided.
This feature is intended only for convenience during interactive use.
"""
kw"const"
"""
function
Functions are defined with the `function` keyword:
```julia
function add(a, b)
return a + b
end
```
Or the short form notation:
```julia
add(a, b) = a + b
```
The use of the [`return`](@ref) keyword is exactly the same as in other languages,
but is often optional. A function without an explicit `return` statement will return
the last expression in the function body.
"""
kw"function"
"""
return
`return` can be used in function bodies to exit early and return a given value, e.g.
```julia
function compare(a, b)
a == b && return "equal to"
a < b ? "less than" : "greater than"
end
```
In general you can place a `return` statement anywhere within a function body, including
within deeply nested loops or conditionals, but be careful with `do` blocks. For
example:
```julia
function test1(xs)
for x in xs
iseven(x) && return 2x
end
end
function test2(xs)
map(xs) do x
iseven(x) && return 2x
x
end
end
```
In the first example, the return breaks out of its enclosing function as soon as it hits
an even number, so `test1([5,6,7])` returns `12`.
You might expect the second example to behave the same way, but in fact the `return`
there only breaks out of the *inner* function (inside the `do` block) and gives a value
back to `map`. `test2([5,6,7])` then returns `[5,12,7]`.
"""
kw"return"
"""
if/elseif/else
`if`/`elseif`/`else` performs conditional evaluation, which allows portions of code to
be evaluated or not evaluated depending on the value of a boolean expression. Here is
the anatomy of the `if`/`elseif`/`else` conditional syntax:
```julia
if x < y
println("x is less than y")
elseif x > y
println("x is greater than y")
else
println("x is equal to y")
end
```
If the condition expression `x < y` is true, then the corresponding block is evaluated;
otherwise the condition expression `x > y` is evaluated, and if it is true, the
corresponding block is evaluated; if neither expression is true, the `else` block is
evaluated. The `elseif` and `else` blocks are optional, and as many `elseif` blocks as
desired can be used.
"""
kw"if", kw"elseif", kw"else"
"""
for
`for` loops repeatedly evaluate the body of the loop by
iterating over a sequence of values.
# Examples
```jldoctest
julia> for i in [1, 4, 0]
println(i)
end
1
4
0
```
"""
kw"for"
"""
while
`while` loops repeatedly evaluate a conditional expression, and continues evaluating the
body of the while loop so long as the expression remains `true`. If the condition
expression is false when the while loop is first reached, the body is never evaluated.
# Examples
```jldoctest
julia> i = 1
1
julia> while i < 5
println(i)
global i += 1
end
1
2
3
4
```
"""
kw"while"
"""
end
`end` marks the conclusion of a block of expressions, for example
[`module`](@ref), [`struct`](@ref), [`mutable struct`](@ref),
[`begin`](@ref), [`let`](@ref), [`for`](@ref) etc.
`end` may also be used when indexing into an array to represent
the last index of a dimension.
# Examples
```jldoctest
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> A[end, :]
2-element Array{Int64,1}:
3
4
```
"""
kw"end"
"""
try/catch
A `try`/`catch` statement allows for `Exception`s to be tested for. For example, a
customized square root function can be written to automatically call either the real or
complex square root method on demand using `Exception`s:
```julia
f(x) = try
sqrt(x)
catch
sqrt(complex(x, 0))
end
```
`try`/`catch` statements also allow the `Exception` to be saved in a variable, e.g. `catch y`.
The power of the `try`/`catch` construct lies in the ability to unwind a deeply
nested computation immediately to a much higher level in the stack of calling functions.
"""
kw"try", kw"catch"
"""
finally
Run some code when a given block of code exits, regardless
of how it exits. For example, here is how we can guarantee that an opened file is
closed:
```julia
f = open("file")
try
operate_on_file(f)
finally
close(f)
end
```
When control leaves the [`try`](@ref) block (for example, due to a [`return`](@ref), or just finishing
normally), [`close(f)`](@ref) will be executed. If the `try` block exits due to an exception,
the exception will continue propagating. A `catch` block may be combined with `try` and
`finally` as well. In this case the `finally` block will run after `catch` has handled
the error.
"""
kw"finally"
"""
break
Break out of a loop immediately.
# Examples
```jldoctest
julia> i = 0
0
julia> while true
global i += 1
i > 5 && break
println(i)
end
1
2
3
4
5
```
"""
kw"break"
"""
continue
Skip the rest of the current loop iteration.
# Examples
```jldoctest
julia> for i = 1:6
iseven(i) && continue
println(i)
end
1
3
5
```
"""
kw"continue"
"""
do
Create an anonymous function. For example:
```julia
map(1:10) do x
2x
end
```
is equivalent to `map(x->2x, 1:10)`.
Use multiple arguments like so:
```julia
map(1:10, 11:20) do x, y
x + y
end
```
"""
kw"do"
"""
...
The "splat" operator, `...`, represents a sequence of arguments.
`...` can be used in function definitions, to indicate that the function
accepts an arbitrary number of arguments.
`...` can also be used to apply a function to a sequence of arguments.
# Examples
```jldoctest
julia> add(xs...) = reduce(+, xs)
add (generic function with 1 method)
julia> add(1, 2, 3, 4, 5)
15
julia> add([1, 2, 3]...)
6
julia> add(7, 1:100..., 1000:1100...)
111107
```
"""
kw"..."
"""
;
`;` has a similar role in Julia as in many C-like languages, and is used to delimit the
end of the previous statement. `;` is not necessary after new lines, but can be used to
separate statements on a single line or to join statements into a single expression.
`;` is also used to suppress output printing in the REPL and similar interfaces.
# Examples
```julia
julia> function foo()
x = "Hello, "; x *= "World!"
return x
end
foo (generic function with 1 method)
julia> bar() = (x = "Hello, Mars!"; return x)
bar (generic function with 1 method)
julia> foo();
julia> bar()
"Hello, Mars!"
```
"""
kw";"
"""
x && y
Short-circuiting boolean AND.
"""
kw"&&"
"""
x || y
Short-circuiting boolean OR.
"""
kw"||"
"""
ccall((function_name, library), returntype, (argtype1, ...), argvalue1, ...)
ccall(function_pointer, returntype, (argtype1, ...), argvalue1, ...)
Call a function in a C-exported shared library, specified by the tuple `(function_name, library)`,
where each component is either a string or symbol. Alternatively, `ccall` may
also be used to call a function pointer `function_pointer`, such as one returned by `dlsym`.
Note that the argument type tuple must be a literal tuple, and not a tuple-valued
variable or expression.
Each `argvalue` to the `ccall` will be converted to the corresponding
`argtype`, by automatic insertion of calls to `unsafe_convert(argtype,
cconvert(argtype, argvalue))`. (See also the documentation for
[`unsafe_convert`](@ref Base.unsafe_convert) and [`cconvert`](@ref Base.cconvert) for further details.)
In most cases, this simply results in a call to `convert(argtype, argvalue)`.
"""
kw"ccall"
"""
llvmcall(IR::String, ReturnType, (ArgumentType1, ...), ArgumentValue1, ...)
llvmcall((declarations::String, IR::String), ReturnType, (ArgumentType1, ...), ArgumentValue1, ...)
Call LLVM IR string in the first argument. Similar to an LLVM function `define` block,
arguments are available as consecutive unnamed SSA variables (%0, %1, etc.).
The optional declarations string contains external functions declarations that are
necessary for llvm to compile the IR string. Multiple declarations can be passed in by
separating them with line breaks.
Note that the argument type tuple must be a literal tuple, and not a tuple-valued
variable or expression.
Each `ArgumentValue` to `llvmcall` will be converted to the corresponding
`ArgumentType`, by automatic insertion of calls to `unsafe_convert(ArgumentType,
cconvert(ArgumentType, ArgumentValue))`. (See also the documentation for
[`unsafe_convert`](@ref Base.unsafe_convert) and [`cconvert`](@ref Base.cconvert) for further details.)
In most cases, this simply results in a call to `convert(ArgumentType, ArgumentValue)`.
See `test/llvmcall.jl` for usage examples.
"""
Core.Intrinsics.llvmcall
"""
begin
`begin...end` denotes a block of code.
```julia
begin
println("Hello, ")
println("World!")
end
```
Usually `begin` will not be necessary, since keywords such as [`function`](@ref) and [`let`](@ref)
implicitly begin blocks of code. See also [`;`](@ref).
"""
kw"begin"
"""
struct
The most commonly used kind of type in Julia is a struct, specified as a name and a
set of fields.
```julia
struct Point
x
y
end
```
Fields can have type restrictions, which may be parameterized:
```julia
struct Point{X}
x::X
y::Float64
end
```
A struct can also declare an abstract super type via `<:` syntax:
```julia
struct Point <: AbstractPoint
x
y
end
```
`struct`s are immutable by default; an instance of one of these types cannot
be modified after construction. Use [`mutable struct`](@ref) instead to declare a
type whose instances can be modified.
See the manual section on [Composite Types](@ref) for more details,
such as how to define constructors.
"""
kw"struct"
"""
mutable struct
`mutable struct` is similar to [`struct`](@ref), but additionally allows the
fields of the type to be set after construction. See the manual section on
[Composite Types](@ref) for more information.
"""
kw"mutable struct"
"""
new
Special function available to inner constructors which created a new object
of the type.
See the manual section on [Inner Constructor Methods](@ref) for more information.
"""
kw"new"
"""
where
The `where` keyword creates a type that is an iterated union of other types, over all
values of some variable. For example `Vector{T} where T<:Real` includes all [`Vector`](@ref)s
where the element type is some kind of `Real` number.
The variable bound defaults to `Any` if it is omitted:
```julia
Vector{T} where T # short for `where T<:Any`
```
Variables can also have lower bounds:
```julia
Vector{T} where T>:Int
Vector{T} where Int<:T<:Real
```
There is also a concise syntax for nested `where` expressions. For example, this:
```julia
Pair{T, S} where S<:Array{T} where T<:Number
```
can be shortened to:
```julia
Pair{T, S} where {T<:Number, S<:Array{T}}
```
This form is often found on method signatures.
Note that in this form, the variables are listed outermost-first. This matches the
order in which variables are substituted when a type is "applied" to parameter values
using the syntax `T{p1, p2, ...}`.
"""
kw"where"
"""
ans
A variable referring to the last computed value, automatically set at the interactive prompt.
"""
kw"ans"
"""
devnull
Used in a stream redirect to discard all data written to it. Essentially equivalent to
/dev/null on Unix or NUL on Windows. Usage:
```julia
run(pipeline(`cat test.txt`, devnull))
```
"""
devnull
# doc strings for code in boot.jl and built-ins
"""
Nothing
A type with no fields that is the type of [`nothing`](@ref).
"""
Nothing
"""
nothing
The singleton instance of type [`Nothing`](@ref), used by convention when there is no value to return
(as in a C `void` function) or when a variable or field holds no value.
"""
nothing
"""
Core.TypeofBottom
The singleton type containing only the value `Union{}`.
"""
Core.TypeofBottom
"""
Function
Abstract type of all functions.
```jldoctest
julia> isa(+, Function)
true
julia> typeof(sin)
typeof(sin)
julia> ans <: Function
true
```
"""
Function
"""
ReadOnlyMemoryError()
An operation tried to write to memory that is read-only.
"""
ReadOnlyMemoryError
"""
ErrorException(msg)
Generic error type. The error message, in the `.msg` field, may provide more specific details.
# Example
```jldoctest
julia> ex = ErrorException("I've done a bad thing");
julia> ex.msg
"I've done a bad thing"
```
"""
ErrorException
"""
WrappedException(msg)
Generic type for `Exception`s wrapping another `Exception`, such as `LoadError` and
`InitError`. Those exceptions contain information about the root cause of an
exception. Subtypes define a field `error` containing the causing `Exception`.
"""
Core.WrappedException
"""
UndefRefError()
The item or field is not defined for the given object.
"""
UndefRefError
"""
Float32(x [, mode::RoundingMode])
Create a `Float32` from `x`. If `x` is not exactly representable then `mode` determines how
`x` is rounded.
# Examples
```jldoctest
julia> Float32(1/3, RoundDown)
0.3333333f0
julia> Float32(1/3, RoundUp)
0.33333334f0
```
See [`RoundingMode`](@ref) for available rounding modes.
"""
Float32(x)
"""
Float64(x [, mode::RoundingMode])
Create a `Float64` from `x`. If `x` is not exactly representable then `mode` determines how
`x` is rounded.
# Examples
```jldoctest
julia> Float64(pi, RoundDown)
3.141592653589793
julia> Float64(pi, RoundUp)
3.1415926535897936
```
See [`RoundingMode`](@ref) for available rounding modes.
"""
Float64(x)
"""
OutOfMemoryError()
An operation allocated too much memory for either the system or the garbage collector to
handle properly.
"""
OutOfMemoryError
"""
BoundsError([a],[i])
An indexing operation into an array, `a`, tried to access an out-of-bounds element at index `i`.
# Examples
```jldoctest; filter = r"Stacktrace:(\\n \\[[0-9]+\\].*)*"
julia> A = fill(1.0, 7);
julia> A[8]
ERROR: BoundsError: attempt to access 7-element Array{Float64,1} at index [8]
Stacktrace:
[1] getindex(::Array{Float64,1}, ::Int64) at ./array.jl:660
[2] top-level scope
julia> B = fill(1.0, (2,3));
julia> B[2, 4]
ERROR: BoundsError: attempt to access 2×3 Array{Float64,2} at index [2, 4]
Stacktrace:
[1] getindex(::Array{Float64,2}, ::Int64, ::Int64) at ./array.jl:661
[2] top-level scope
julia> B[9]
ERROR: BoundsError: attempt to access 2×3 Array{Float64,2} at index [9]
Stacktrace:
[1] getindex(::Array{Float64,2}, ::Int64) at ./array.jl:660
[2] top-level scope
```
"""
BoundsError
"""
InexactError(name::Symbol, T, val)
Cannot exactly convert `val` to type `T` in a method of function `name`.
# Examples
```jldoctest
julia> convert(Float64, 1+2im)
ERROR: InexactError: Float64(Float64, 1 + 2im)
Stacktrace:
[...]
```
"""
InexactError
"""
DomainError(val)
DomainError(val, msg)
The argument `val` to a function or constructor is outside the valid domain.
# Examples
```jldoctest
julia> sqrt(-1)
ERROR: DomainError with -1.0:
sqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).
Stacktrace:
[...]
```
"""
DomainError
"""
Task(func)
Create a `Task` (i.e. coroutine) to execute the given function `func` (which must be
callable with no arguments). The task exits when this function returns.
# Examples
```jldoctest
julia> a() = sum(i for i in 1:1000);
julia> b = Task(a);
```
In this example, `b` is a runnable `Task` that hasn't started yet.
"""
Task
"""
StackOverflowError()