-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathtrig.jl
1103 lines (995 loc) · 34.6 KB
/
trig.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. Except for the *_kernel functions (see below),
# license is MIT: https://julialang.org/license
struct DoubleFloat64
hi::Float64
lo::Float64
end
struct DoubleFloat32
hi::Float64
end
# sin_kernel and cos_kernel functions are only valid for |x| < pi/4 = 0.7854
# translated from openlibm code: k_sin.c, k_cos.c, k_sinf.c, k_cosf.c.
# atan functions are based on openlibm code: s_atan.c, s_atanf.c.
# acos functions are based on openlibm code: e_acos.c, e_acosf.c.
# asin functions are based on openlibm code: e_asin.c, e_asinf.c. The above
# functions are made available under the following licence:
## Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
##
## Developed at SunPro, a Sun Microsystems, Inc. business.
## Permission to use, copy, modify, and distribute this
## software is freely granted, provided that this notice
## is preserved.
# Trigonometric functions
# sin methods
@noinline sin_domain_error(x) = throw(DomainError(x, "sin(x) is only defined for finite x."))
function sin(x::T) where T<:Union{Float32, Float64}
absx = abs(x)
if absx < T(pi)/4 #|x| ~<= pi/4, no need for reduction
if absx < sqrt(eps(T))
return x
end
return sin_kernel(x)
elseif isnan(x)
return T(NaN)
elseif isinf(x)
sin_domain_error(x)
end
n, y = rem_pio2_kernel(x)
n = n&3
if n == 0
return sin_kernel(y)
elseif n == 1
return cos_kernel(y)
elseif n == 2
return -sin_kernel(y)
else
return -cos_kernel(y)
end
end
sin(x::Real) = sin(float(x))
# Coefficients in 13th order polynomial approximation on [0; π/4]
# sin(x) ≈ x + S1*x³ + S2*x⁵ + S3*x⁷ + S4*x⁹ + S5*x¹¹ + S6*x¹³
# D for double, S for sin, number is the order of x-1
const DS1 = -1.66666666666666324348e-01
const DS2 = 8.33333333332248946124e-03
const DS3 = -1.98412698298579493134e-04
const DS4 = 2.75573137070700676789e-06
const DS5 = -2.50507602534068634195e-08
const DS6 = 1.58969099521155010221e-10
"""
sin_kernel(yhi, ylo)
Computes the sine on the interval [-π/4; π/4].
"""
@inline function sin_kernel(y::DoubleFloat64)
y² = y.hi*y.hi
y⁴ = y²*y²
r = @horner(y², DS2, DS3, DS4) + y²*y⁴*@horner(y², DS5, DS6)
y³ = y²*y.hi
y.hi-((y²*(0.5*y.lo-y³*r)-y.lo)-y³*DS1)
end
@inline function sin_kernel(y::Float64)
y² = y*y
y⁴ = y²*y²
r = @horner(y², DS2, DS3, DS4) + y²*y⁴*@horner(y², DS5, DS6)
y³ = y²*y
y+y³*(DS1+y²*r)
end
# sin_kernels accepting values from rem_pio2 in the Float32 case
@inline sin_kernel(x::Float32) = sin_kernel(DoubleFloat32(x))
@inline function sin_kernel(y::DoubleFloat32)
S1 = -0.16666666641626524
S2 = 0.008333329385889463
z = y.hi*y.hi
w = z*z
r = @horner(z, -0.00019839334836096632, 2.718311493989822e-6)
s = z*y.hi
Float32((y.hi + s*@horner(z, S1, S2)) + s*w*r)
end
# cos methods
@noinline cos_domain_error(x) = throw(DomainError(x, "cos(x) is only defined for finite x."))
function cos(x::T) where T<:Union{Float32, Float64}
absx = abs(x)
if absx < T(pi)/4
if absx < sqrt(eps(T)/T(2.0))
return T(1.0)
end
return cos_kernel(x)
elseif isnan(x)
return T(NaN)
elseif isinf(x)
cos_domain_error(x)
else
n, y = rem_pio2_kernel(x)
n = n&3
if n == 0
return cos_kernel(y)
elseif n == 1
return -sin_kernel(y)
elseif n == 2
return -cos_kernel(y)
else
return sin_kernel(y)
end
end
end
cos(x::Real) = cos(float(x))
const DC1 = 4.16666666666666019037e-02
const DC2 = -1.38888888888741095749e-03
const DC3 = 2.48015872894767294178e-05
const DC4 = -2.75573143513906633035e-07
const DC5 = 2.08757232129817482790e-09
const DC6 = -1.13596475577881948265e-11
"""
cos_kernel(y)
Compute the cosine on the interval y∈[-π/4; π/4].
"""
@inline function cos_kernel(y::DoubleFloat64)
y² = y.hi*y.hi
y⁴ = y²*y²
r = y²*@horner(y², DC1, DC2, DC3) + y⁴*y⁴*@horner(y², DC4, DC5, DC6)
half_y² = 0.5*y²
w = 1.0-half_y²
w + (((1.0-w)-half_y²) + (y²*r-y.hi*y.lo))
end
@inline function cos_kernel(y::Float64)
y² = y*y
y⁴ = y²*y²
r = y²*@horner(y², DC1, DC2, DC3) + y⁴*y⁴*@horner(y², DC4, DC5, DC6)
half_y² = 0.5*y²
w = 1.0-half_y²
w + (((1.0-w)-half_y²) + (y²*r))
end
# cos_kernels accepting values from rem_pio2 in the Float32 case
cos_kernel(x::Float32) = cos_kernel(DoubleFloat32(x))
@inline function cos_kernel(y::DoubleFloat32)
C0 = -0.499999997251031
C1 = 0.04166662332373906
y² = y.hi*y.hi
y⁴ = y²*y²
r = @horner(y², -0.001388676377460993, 2.439044879627741e-5)
Float32(((1.0+y²*C0) + y⁴*C1) + (y⁴*y²)*r)
end
### sincos methods
@noinline sincos_domain_error(x) = throw(DomainError(x, "sincos(x) is only defined for finite x."))
"""
sincos(x)
Simultaneously compute the sine and cosine of `x`, where the `x` is in radians.
"""
function sincos(x::T) where T<:Union{Float32, Float64}
if abs(x) < T(pi)/4
if x == zero(T)
return x, one(T)
end
return sincos_kernel(x)
elseif isnan(x)
return T(NaN), T(NaN)
elseif isinf(x)
sincos_domain_error(x)
end
n, y = rem_pio2_kernel(x)
n = n&3
# calculate both kernels at the reduced y...
si, co = sincos_kernel(y)
# ... and use the same selection scheme as above: (sin, cos, -sin, -cos) for
# for sin and (cos, -sin, -cos, sin) for cos
if n == 0
return si, co
elseif n == 1
return co, -si
elseif n == 2
return -si, -co
else
return -co, si
end
end
_sincos(x::AbstractFloat) = sincos(x)
_sincos(x) = (sin(x), cos(x))
sincos(x) = _sincos(float(x))
# There's no need to write specialized kernels, as inlining takes care of remo-
# ving superfluous calculations.
@inline sincos_kernel(y::Union{Float32, Float64, DoubleFloat32, DoubleFloat64}) = (sin_kernel(y), cos_kernel(y))
# tangent methods
@noinline tan_domain_error(x) = throw(DomainError(x, "tan(x) is only defined for finite x."))
function tan(x::T) where T<:Union{Float32, Float64}
absx = abs(x)
if absx < T(pi)/4
if absx < sqrt(eps(T))/2 # first order dominates, but also allows tan(-0)=-0
return x
end
return tan_kernel(x)
elseif isnan(x)
return T(NaN)
elseif isinf(x)
tan_domain_error(x)
end
n, y = rem_pio2_kernel(x)
if iseven(n)
return tan_kernel(y,1)
else
return tan_kernel(y,-1)
end
end
tan(x::Real) = tan(float(x))
@inline tan_kernel(y::Float64) = tan_kernel(DoubleFloat64(y, 0.0), 1)
@inline function tan_kernel(y::DoubleFloat64, k)
# kernel tan function on ~[-pi/4, pi/4] (except on -0)
# Input y is assumed to be bounded by ~pi/4 in magnitude.
# Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
# Algorithm
# 1. Since tan(-y) = -tan(y), we need only to consider positive y.
# 2. Callers must return tan(-0) = -0 without calling here since our
# odd polynomial is not evaluated in a way that preserves -0.
# Callers may do the optimization tan(y) ~ y for tiny y.
# 3. tan(y) is approximated by a odd polynomial of degree 27 on
# [0,0.67434]
# 3 27
# tan(y) ~ y + T1*y + ... + T13*y ≡ P(y)
# where
#
# |tan(y) 2 4 26 | -59.2
# (tan(y)-P(y))/y = |----- - (1+T1*y +T2*y +.... +T13*y )| <= 2
# | y |
#
# Note: tan(y+z) = tan(y) + tan'(y)*z
# ~ tan(y) + (1+y*y)*z
# Therefore, for better accuracz in computing tan(y+z), let
# 3 2 2 2 2
# r = y *(T2+y *(T3+y *(...+y *(T12+y *T13))))
# then
# 3 2
# tan(y+z) = y + (T1*y + (y *(r+z)+z))
#
# 4. For y in [0.67434,pi/4], let z = pi/4 - y, then
# tan(y) = tan(pi/4-z) = (1-tan(z))/(1+tan(z))
# = 1 - 2*(tan(z) - (tan(z)^2)/(1+tan(z)))
yhi = y.hi
ylo = y.lo
if abs(yhi) >= 0.6744
if yhi < 0.0
yhi = -yhi
ylo = -ylo
end
# Then, accurately reduce y as "pio4hi"-yhi+"pio4lo"-ylo
yhi = (pi/4 - yhi) + (3.06161699786838301793e-17 - ylo)
# yhi is guaranteed to be exact, so ylo is identically zero
ylo = 0.0
end
y² = yhi * yhi
y⁴ = y² * y²
# Break P(y)-T1*y³ = y^5*(T[2]+y^2*T[3]+...) into y⁵*r + y⁵*v where
# r = T[2]+y^4*T[4]+...+y^20*T[12])
# v = (y^2*(T[3]+y^4*T[5]+...+y^22*[T13]))
r = @horner(y⁴,
1.33333333333201242699e-01, # T2
2.18694882948595424599e-02, # T4
3.59207910759131235356e-03, # T6
5.88041240820264096874e-04, # T8
7.81794442939557092300e-05, # T10
-1.85586374855275456654e-05) # T12
v = y² * @horner(y⁴,
5.39682539762260521377e-02, # T3
8.86323982359930005737e-03, # T5
1.45620945432529025516e-03, # T7
2.46463134818469906812e-04, # T9
7.14072491382608190305e-05, # T11
2.59073051863633712884e-05) # T13
# Precompute y³
y³ = y² * yhi
# Calculate P(y)-y-T1*y³ = y⁵*r + y⁵*v = y²(y³*(r+v))
r = ylo + y² * (y³ * (r + v) + ylo)
# Calculate P(y)-y = r+T1*y³
r += 3.33333333333334091986e-01*y³
# Calculate w = r+y = P(y)
Px = yhi + r
if abs(y.hi) >= 0.6744
# If the original y was above the threshold, then we calculate
# tan(y) = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
# ≈ 1 - 2*(P(z) - (P(z)^2)/(1+P(z)))
# where z = y-π/4.
return (signbit(y.hi) ? -1.0 : 1.0)*(k - 2*(yhi-(Px^2/(k+Px)-r)))
end
if k == 1
# Else, we simply return w = P(y) if k == 1 (integer multiple from argument
# reduction was even)...
return Px
else
# ...or tan(y) ≈ -1.0/(y+r) if !(k == 1) (integer multiple from argument
# reduction was odd). If 2ulp error is allowed, simply return the frac-
# tion directly. Instead, we calculate it accurately.
# Px0 is w with zeroed out low word
Px0 = reinterpret(Float64, (reinterpret(UInt64, Px) >> 32) << 32)
v = r - (Px0 - yhi) # Px0+v = r+y
t = a = -1.0 / Px
# zero out low word of t
t = reinterpret(Float64, (reinterpret(UInt64, t) >> 32) << 32)
s = 1.0 + t * Px0
return t + a * (s + t * v)
end
end
@inline tan_kernel(y::Float32) = tan_kernel(DoubleFloat32(y), 1)
@inline function tan_kernel(y::DoubleFloat32, k)
# |tan(y)/y - t(y)| < 2**-25.5 (~[-2e-08, 2e-08]). */
y² = y.hi*y.hi
r = @horner(y², 0.00297435743359967304927, 0.00946564784943673166728)
t = @horner(y², 0.0533812378445670393523, 0.0245283181166547278873)
y⁴ = y²*y²
y³ = y²*y.hi
u = @horner(y², 0.333331395030791399758, 0.133392002712976742718)
Py = (y.hi+y³*u)+(y³*y⁴)*(t+y⁴*r)
if k == 1
return Float32(Py)
end
return Float32(-1.0/Py)
end
# fallback methods
sin_kernel(x::Real) = sin(x)
cos_kernel(x::Real) = cos(x)
tan_kernel(x::Real) = tan(x)
sincos_kernel(x::Real) = sincos(x)
# Inverse trigonometric functions
# asin methods
ASIN_X_MIN_THRESHOLD(::Type{Float32}) = 2.0f0^-12
ASIN_X_MIN_THRESHOLD(::Type{Float64}) = sqrt(eps(Float64))
arc_p(t::Float64) =
t*@horner(t,
1.66666666666666657415e-01,
-3.25565818622400915405e-01,
2.01212532134862925881e-01,
-4.00555345006794114027e-02,
7.91534994289814532176e-04,
3.47933107596021167570e-05)
arc_q(z::Float64) =
@horner(z,
1.0,
-2.40339491173441421878e+00,
2.02094576023350569471e+00,
-6.88283971605453293030e-01,
7.70381505559019352791e-02)
arc_p(t::Float32) =
t*@horner(t,
1.6666586697f-01,
-4.2743422091f-02,
-8.6563630030f-03)
arc_q(t::Float32) = @horner(t, 1.0f0, -7.0662963390f-01)
@inline arc_tRt(t) = arc_p(t)/arc_q(t)
@inline function asin_kernel(t::Float64, x::Float64)
# we use that for 1/2 <= x < 1 we have
# asin(x) = pi/2-2*asin(sqrt((1-x)/2))
# Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
# then for x>0.98
# asin(x) = pi/2 - 2*(s+s*z*R(z))
# = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
# For x<=0.98, let pio4_hi = pio2_hi/2, then
# f = hi part of s;
# c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
# and
# asin(x) = pi/2 - 2*(s+s*z*R(z))
# = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
# = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
pio2_lo = 6.12323399573676603587e-17
s = sqrt_llvm(t)
tRt = arc_tRt(t)
if abs(x) >= 0.975 # |x| > 0.975
return flipsign(pi/2 - (2.0*(s + s*tRt) - pio2_lo), x)
else
s0 = reinterpret(Float64, (reinterpret(UInt64, s) >> 32) << 32)
c = (t - s0*s0)/(s + s0)
p = 2.0*s*tRt - (pio2_lo - 2.0*c)
q = pi/4 - 2.0*s0
return flipsign(pi/4 - (p-q), x)
end
end
@inline function asin_kernel(t::Float32, x::Float32)
s = sqrt_llvm(Float64(t))
tRt = arc_tRt(t) # rational approximation
flipsign(Float32(pi/2 - 2*(s + s*tRt)), x)
end
@noinline asin_domain_error(x) = throw(DomainError(x, "asin(x) is not defined for |x|>1."))
function asin(x::T) where T<:Union{Float32, Float64}
# Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
# we approximate asin(x) on [0,0.5] by
# asin(x) = x + x*x^2*R(x^2)
# where
# R(x^2) is a rational approximation of (asin(x)-x)/x^3
# and its remez error is bounded by
# |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
absx = abs(x)
if absx >= T(1.0) # |x|>= 1
if absx == T(1.0)
return flipsign(T(pi)/2, x)
end
asin_domain_error(x)
elseif absx < T(1.0)/2
# if |x| sufficiently small, |x| is a good approximation
if absx < ASIN_X_MIN_THRESHOLD(T)
return x
end
return muladd(x, arc_tRt(x*x), x)
end
# else 1/2 <= |x| < 1
t = (T(1.0) - absx)/2
return asin_kernel(t, x)
end
asin(x::Real) = asin(float(x))
# atan methods
ATAN_1_O_2_HI(::Type{Float64}) = 4.63647609000806093515e-01 # atan(0.5).hi
ATAN_2_O_2_HI(::Type{Float64}) = 7.85398163397448278999e-01 # atan(1.0).hi
ATAN_3_O_2_HI(::Type{Float64}) = 9.82793723247329054082e-01 # atan(1.5).hi
ATAN_INF_HI(::Type{Float64}) = 1.57079632679489655800e+00 # atan(Inf).hi
ATAN_1_O_2_HI(::Type{Float32}) = 4.6364760399f-01 # atan(0.5).hi
ATAN_2_O_2_HI(::Type{Float32}) = 7.8539812565f-01 # atan(1.0).hi
ATAN_3_O_2_HI(::Type{Float32}) = 9.8279368877f-01 # atan(1.5).hi
ATAN_INF_HI(::Type{Float32}) = 1.5707962513f+00 # atan(Inf).hi
ATAN_1_O_2_LO(::Type{Float64}) = 2.26987774529616870924e-17 # atan(0.5).lo
ATAN_2_O_2_LO(::Type{Float64}) = 3.06161699786838301793e-17 # atan(1.0).lo
ATAN_3_O_2_LO(::Type{Float64}) = 1.39033110312309984516e-17 # atan(1.5).lo
ATAN_INF_LO(::Type{Float64}) = 6.12323399573676603587e-17 # atan(Inf).lo
ATAN_1_O_2_LO(::Type{Float32}) = 5.0121582440f-09 # atan(0.5).lo
ATAN_2_O_2_LO(::Type{Float32}) = 3.7748947079f-08 # atan(1.0).lo
ATAN_3_O_2_LO(::Type{Float32}) = 3.4473217170f-08 # atan(1.5).lo
ATAN_INF_LO(::Type{Float32}) = 7.5497894159f-08 # atan(Inf).lo
ATAN_LARGE_X(::Type{Float64}) = 2.0^66 # seems too large? 2.0^60 gives the same
ATAN_SMALL_X(::Type{Float64}) = 2.0^-27
ATAN_LARGE_X(::Type{Float32}) = 2.0f0^26
ATAN_SMALL_X(::Type{Float32}) = 2.0f0^-12
atan_p(z::Float64, w::Float64) = z*@horner(w,
3.33333333333329318027e-01,
1.42857142725034663711e-01,
9.09088713343650656196e-02,
6.66107313738753120669e-02,
4.97687799461593236017e-02,
1.62858201153657823623e-02)
atan_q(w::Float64) = w*@horner(w,
-1.99999999998764832476e-01,
-1.11111104054623557880e-01,
-7.69187620504482999495e-02,
-5.83357013379057348645e-02,
-3.65315727442169155270e-02)
atan_p(z::Float32, w::Float32) = z*@horner(w, 3.3333328366f-01, 1.4253635705f-01, 6.1687607318f-02)
atan_q(w::Float32) = w*@horner(w, -1.9999158382f-01, -1.0648017377f-01)
@inline function atan_pq(x)
x² = x*x
x⁴ = x²*x²
# break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly
atan_p(x², x⁴), atan_q(x⁴)
end
atan(x::Real) = atan(float(x))
function atan(x::T) where T<:Union{Float32, Float64}
# Method
# 1. Reduce x to positive by atan(x) = -atan(-x).
# 2. According to the integer k=4t+0.25 chopped, t=x, the argument
# is further reduced to one of the following intervals and the
# arctangent of t is evaluated by the corresponding formula:
#
# [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
# [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
# [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
# [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
# [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
#
# If isnan(x) is true, then the nan value will eventually be passed to
# atan_pq(x) and return the appropriate nan value.
absx = abs(x)
if absx >= ATAN_LARGE_X(T)
return copysign(T(1.5707963267948966), x)
end
if absx < T(7/16)
# no reduction needed
if absx < ATAN_SMALL_X(T)
return x
end
p, q = atan_pq(x)
return x - x*(p + q)
end
xsign = sign(x)
if absx < T(19/16) # 7/16 <= |x| < 19/16
if absx < T(11/16) # 7/16 <= |x| <11/16
hi = ATAN_1_O_2_HI(T)
lo = ATAN_1_O_2_LO(T)
x = (T(2.0)*absx - T(1.0))/(T(2.0) + absx)
else # 11/16 <= |x| < 19/16
hi = ATAN_2_O_2_HI(T)
lo = ATAN_2_O_2_LO(T)
x = (absx - T(1.0))/(absx + T(1.0))
end
else
if absx < T(39/16) # 19/16 <= |x| < 39/16
hi = ATAN_3_O_2_HI(T)
lo = ATAN_3_O_2_LO(T)
x = (absx - T(1.5))/(T(1.0) + T(1.5)*absx)
else # 39/16 <= |x| < upper threshold (2.0^66 or 2.0f0^26)
hi = ATAN_INF_HI(T)
lo = ATAN_INF_LO(T)
x = -T(1.0)/absx
end
end
# end of argument reduction
p, q = atan_pq(x)
z = hi - ((x*(p + q) - lo) - x)
copysign(z, xsign)
end
# atan2 methods
ATAN2_PI_LO(::Type{Float32}) = -8.7422776573f-08
ATAN2_RATIO_BIT_SHIFT(::Type{Float32}) = 23
ATAN2_RATIO_THRESHOLD(::Type{Float32}) = 26
ATAN2_PI_LO(::Type{Float64}) = 1.2246467991473531772E-16
ATAN2_RATIO_BIT_SHIFT(::Type{Float64}) = 20
ATAN2_RATIO_THRESHOLD(::Type{Float64}) = 60
function atan(y::T, x::T) where T<:Union{Float32, Float64}
# Method :
# M1) Reduce y to positive by atan2(y,x)=-atan2(-y,x).
# M2) Reduce x to positive by (if x and y are unexceptional):
# ARG (x+iy) = arctan(y/x) ... if x > 0,
# ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
#
# Special cases:
#
# S1) ATAN2((anything), NaN ) is NaN;
# S2) ATAN2(NAN , (anything) ) is NaN;
# S3) ATAN2(+-0, +(anything but NaN)) is +-0 ;
# S4) ATAN2(+-0, -(anything but NaN)) is +-pi ;
# S5) ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
# S6) ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
# S7) ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
# S8) ATAN2(+-INF,+INF ) is +-pi/4 ;
# S9) ATAN2(+-INF,-INF ) is +-3pi/4;
# S10) ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
if isnan(x) || isnan(y) # S1 or S2
return T(NaN)
end
if x == T(1.0) # then y/x = y and x > 0, see M2
return atan(y)
end
# generate an m ∈ {0, 1, 2, 3} to branch off of
m = 2*signbit(x) + 1*signbit(y)
if iszero(y)
if m == 0 || m == 1
return y # atan(+-0, +anything) = +-0
elseif m == 2
return T(pi) # atan(+0, -anything) = pi
elseif m == 3
return -T(pi) # atan(-0, -anything) =-pi
end
elseif iszero(x)
return flipsign(T(pi)/2, y)
end
if isinf(x)
if isinf(y)
if m == 0
return T(pi)/4 # atan(+Inf), +Inf))
elseif m == 1
return -T(pi)/4 # atan(-Inf), +Inf))
elseif m == 2
return 3*T(pi)/4 # atan(+Inf, -Inf)
elseif m == 3
return -3*T(pi)/4 # atan(-Inf,-Inf)
end
else
if m == 0
return zero(T) # atan(+...,+Inf) */
elseif m == 1
return -zero(T) # atan(-...,+Inf) */
elseif m == 2
return T(pi) # atan(+...,-Inf) */
elseif m == 3
return -T(pi) # atan(-...,-Inf) */
end
end
end
# x wasn't Inf, but y is
isinf(y) && return copysign(T(pi)/2, y)
ypw = poshighword(y)
xpw = poshighword(x)
# compute y/x for Float32
k = reinterpret(Int32, ypw-xpw)>>ATAN2_RATIO_BIT_SHIFT(T)
if k > ATAN2_RATIO_THRESHOLD(T) # |y/x| > threshold
z=T(pi)/2+T(0.5)*ATAN2_PI_LO(T)
m&=1;
elseif x<0 && k < -ATAN2_RATIO_THRESHOLD(T) # 0 > |y|/x > threshold
z = zero(T)
else #safe to do y/x
z = atan(abs(y/x))
end
if m == 0
return z # atan(+,+)
elseif m == 1
return -z # atan(-,+)
elseif m == 2
return T(pi)-(z-ATAN2_PI_LO(T)) # atan(+,-)
else # default case m == 3
return (z-ATAN2_PI_LO(T))-T(pi) # atan(-,-)
end
end
# acos methods
ACOS_X_MIN_THRESHOLD(::Type{Float32}) = 2.0f0^-26
ACOS_X_MIN_THRESHOLD(::Type{Float64}) = 2.0^-57
PIO2_HI(::Type{Float32}) = 1.5707962513f+00
PIO2_LO(::Type{Float32}) = 7.5497894159f-08
PIO2_HI(::Type{Float64}) = 1.57079632679489655800e+00
PIO2_LO(::Type{Float64}) = 6.12323399573676603587e-17
ACOS_PI(::Type{Float32}) = 3.1415925026f+00
ACOS_PI(::Type{Float64}) = 3.14159265358979311600e+00
@inline ACOS_CORRECT_LOWWORD(::Type{Float32}, x) = reinterpret(Float32, (reinterpret(UInt32, x) & 0xfffff000))
@inline ACOS_CORRECT_LOWWORD(::Type{Float64}, x) = reinterpret(Float64, (reinterpret(UInt64, x) >> 32) << 32)
@noinline acos_domain_error(x) = throw(DomainError(x, "acos(x) not defined for |x| > 1"))
function acos(x::T) where T <: Union{Float32, Float64}
# Method :
# acos(x) = pi/2 - asin(x)
# acos(-x) = pi/2 + asin(x)
# As a result, we use the same rational approximation (arc_tRt) as in asin.
# See the comments in asin for more information about this approximation.
# 1) For |x| <= 0.5
# acos(x) = pi/2 - (x + x*x^2*R(x^2))
# 2) For x < -0.5
# acos(x) = pi - 2asin(sqrt((1 - |x|)/2))
# = pi - 0.5*(s+s*z*R(z))
# where z=(1-|x|)/2, s=sqrt(z)
# 3) For x > 0.5
# acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1 - x)/2)))
# = 2asin(sqrt((1 - x)/2))
# = 2s + 2s*z*R(z) ...z=(1 - x)/2, s=sqrt(z)
# = 2f + (2c + 2s*z*R(z))
# where f=hi part of s, and c = (z - f*f)/(s + f) is the correction term
# for f so that f + c ~ sqrt(z).
# Special cases:
# 4) if x is NaN, return x itself;
# 5) if |x|>1 throw warning.
absx = abs(x)
if absx >= T(1.0)
# acos(-1) = π, acos(1) = 0
absx == T(1.0) && return x > T(0.0) ? T(0.0) : T(pi)
# acos(x) is not defined for |x| > 1
acos_domain_error(x) # see 5) above
elseif absx < T(1.0)/2 # see 1) above
# if |x| sufficiently small, acos(x) ≈ pi/2
absx < ACOS_X_MIN_THRESHOLD(T) && return T(pi)/2
# if |x| < 0.5 we have acos(x) = pi/2 - (x + x*x^2*R(x^2))
return PIO2_HI(T) - (x - (PIO2_LO(T) - x*arc_tRt(x*x)))
end
z = (T(1.0) - absx)*T(0.5)
zRz = arc_tRt(z)
s = sqrt_llvm(z)
if x < T(0.0) # see 2) above
return ACOS_PI(T) - T(2.0)*(s + (zRz*s - PIO2_LO(T)))
else # see 3) above
# if x > 0.5 we have
# acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
# = 2asin(sqrt((1-x)/2))
# = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
# = 2f + (2c + 2s*z*R(z))
# where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
# for f so that f+c ~ sqrt(z).
df = ACOS_CORRECT_LOWWORD(T, s)
c = (z - df*df)/(s + df)
return T(2.0)*(df + (zRz*s + c))
end
end
acos(x::Real) = acos(float(x))
# multiply in extended precision
function mulpi_ext(x::Float64)
m = 3.141592653589793
m_hi = 3.1415926218032837
m_lo = 3.178650954705639e-8
x_hi = reinterpret(Float64, reinterpret(UInt64,x) & 0xffff_ffff_f800_0000)
x_lo = x-x_hi
y_hi = m*x
y_lo = x_hi * m_lo + (x_lo* m_hi + ((x_hi*m_hi-y_hi) + x_lo*m_lo))
DoubleFloat64(y_hi,y_lo)
end
mulpi_ext(x::Float32) = DoubleFloat32(pi*Float64(x))
mulpi_ext(x::Rational) = mulpi_ext(float(x))
mulpi_ext(x::Real) = pi*x # Fallback
"""
sinpi(x)
Compute ``\\sin(\\pi x)`` more accurately than `sin(pi*x)`, especially for large `x`.
"""
function sinpi(x::T) where T<:AbstractFloat
if !isfinite(x)
isnan(x) && return x
throw(DomainError(x, "`x` cannot be infinite."))
end
ax = abs(x)
s = maxintfloat(T)/2
ax >= s && return copysign(zero(T),x) # integer-valued
# reduce to interval [-1,1]
# assumes RoundNearest rounding mode
t = 3*s
rx = x-((x+t)-t) # zeros may be incorrectly signed
arx = abs(rx)
if (arx == 0) | (arx == 1)
copysign(zero(T),x)
elseif arx < 0.25
sin_kernel(mulpi_ext(rx))
elseif arx < 0.75
y = mulpi_ext(T(0.5) - arx)
copysign(cos_kernel(y),rx)
else
y = mulpi_ext(copysign(one(T),rx) - rx)
sin_kernel(y)
end
end
# Integers and Rationals
function sinpi(x::T) where T<:Union{Integer,Rational}
Tf = float(T)
if !isfinite(x)
throw(DomainError(x, "`x` must be finite."))
end
# until we get an IEEE remainder function (#9283)
rx = rem(x,2)
if rx > 1
rx -= 2
elseif rx < -1
rx += 2
end
arx = abs(rx)
if (arx == 0) | (arx == 1)
copysign(zero(Tf),x)
elseif arx < 0.25
sin_kernel(mulpi_ext(rx))
elseif arx < 0.75
y = mulpi_ext(T(0.5) - arx)
copysign(cos_kernel(y),rx)
else
y = mulpi_ext(copysign(one(T),rx) - rx)
sin_kernel(y)
end
end
"""
cospi(x)
Compute ``\\cos(\\pi x)`` more accurately than `cos(pi*x)`, especially for large `x`.
"""
function cospi(x::T) where T<:AbstractFloat
if !isfinite(x)
isnan(x) && return x
throw(DomainError(x, "`x` cannot be infinite."))
end
ax = abs(x)
s = maxintfloat(T)
ax >= s && return one(T) # even integer-valued
# reduce to interval [-1,1], then [0,1]
# assumes RoundNearest rounding mode
rx = abs(ax-((ax+s)-s))
if rx <= 0.25
cos_kernel(mulpi_ext(rx))
elseif rx < 0.75
y = mulpi_ext(T(0.5) - rx)
sin_kernel(y)
else
y = mulpi_ext(one(T) - rx)
-cos_kernel(y)
end
end
# Integers and Rationals
function cospi(x::T) where T<:Union{Integer,Rational}
if !isfinite(x)
throw(DomainError(x, "`x` must be finite."))
end
ax = abs(x)
# until we get an IEEE remainder function (#9283)
rx = rem(ax,2)
if rx > 1
rx = 2-rx
end
if rx <= 0.25
cos_kernel(mulpi_ext(rx))
elseif rx < 0.75
y = mulpi_ext(T(0.5) - rx)
sin_kernel(y)
else
y = mulpi_ext(one(T) - rx)
-cos_kernel(y)
end
end
sinpi(x::Integer) = x >= 0 ? zero(float(x)) : -zero(float(x))
cospi(x::Integer) = isodd(x) ? -one(float(x)) : one(float(x))
sinpi(x::Real) = sinpi(float(x))
cospi(x::Real) = cospi(float(x))
function sinpi(z::Complex{T}) where T
F = float(T)
zr, zi = reim(z)
if isinteger(zr)
# zr = ...,-2,-1,0,1,2,...
# sin(pi*zr) == ±0
# cos(pi*zr) == ±1
# cosh(pi*zi) > 0
s = copysign(zero(F),zr)
c_pos = isa(zr,Integer) ? iseven(zr) : isinteger(zr/2)
sh = sinh(pi*zi)
Complex(s, c_pos ? sh : -sh)
elseif isinteger(2*zr)
# zr = ...,-1.5,-0.5,0.5,1.5,2.5,...
# sin(pi*zr) == ±1
# cos(pi*zr) == +0
# sign(sinh(pi*zi)) == sign(zi)
s_pos = isinteger((2*zr-1)/4)
ch = cosh(pi*zi)
Complex(s_pos ? ch : -ch, isnan(zi) ? zero(F) : copysign(zero(F),zi))
elseif !isfinite(zr)
if zi == 0 || isinf(zi)
Complex(F(NaN), F(zi))
else
Complex(F(NaN), F(NaN))
end
else
pizi = pi*zi
Complex(sinpi(zr)*cosh(pizi), cospi(zr)*sinh(pizi))
end
end
function cospi(z::Complex{T}) where T
F = float(T)
zr, zi = reim(z)
if isinteger(zr)
# zr = ...,-2,-1,0,1,2,...
# sin(pi*zr) == ±0
# cos(pi*zr) == ±1
# sign(sinh(pi*zi)) == sign(zi)
# cosh(pi*zi) > 0
s = copysign(zero(F),zr)
c_pos = isa(zr,Integer) ? iseven(zr) : isinteger(zr/2)
ch = cosh(pi*zi)
Complex(c_pos ? ch : -ch, isnan(zi) ? s : -flipsign(s,zi))
elseif isinteger(2*zr)
# zr = ...,-1.5,-0.5,0.5,1.5,2.5,...
# sin(pi*zr) == ±1
# cos(pi*zr) == +0
# sign(sinh(pi*zi)) == sign(zi)
s_pos = isinteger((2*zr-1)/4)
sh = sinh(pi*zi)
Complex(zero(F), s_pos ? -sh : sh)
elseif !isfinite(zr)
if zi == 0
Complex(F(NaN), isnan(zr) ? zero(F) : -flipsign(F(zi),zr))
elseif isinf(zi)
Complex(F(Inf), F(NaN))
else
Complex(F(NaN), F(NaN))
end
else
pizi = pi*zi
Complex(cospi(zr)*cosh(pizi), -sinpi(zr)*sinh(pizi))
end
end
"""
sinc(x)
Compute ``\\sin(\\pi x) / (\\pi x)`` if ``x \\neq 0``, and ``1`` if ``x = 0``.
"""
sinc(x::Number) = x==0 ? one(x) : oftype(x,sinpi(x)/(pi*x))
sinc(x::Integer) = x==0 ? one(x) : zero(x)
sinc(x::Complex{<:AbstractFloat}) = x==0 ? one(x) : oftype(x, sinpi(x)/(pi*x))
sinc(x::Complex) = sinc(float(x))
sinc(x::Real) = x==0 ? one(x) : isinf(x) ? zero(x) : sinpi(x)/(pi*x)
"""
cosc(x)
Compute ``\\cos(\\pi x) / x - \\sin(\\pi x) / (\\pi x^2)`` if ``x \\neq 0``, and ``0`` if
``x = 0``. This is the derivative of `sinc(x)`.
"""
cosc(x::Number) = x==0 ? zero(x) : oftype(x,(cospi(x)-sinpi(x)/(pi*x))/x)
cosc(x::Integer) = cosc(float(x))
cosc(x::Complex{<:AbstractFloat}) = x==0 ? zero(x) : oftype(x,(cospi(x)-sinpi(x)/(pi*x))/x)
cosc(x::Complex) = cosc(float(x))
cosc(x::Real) = x==0 || isinf(x) ? zero(x) : (cospi(x)-sinpi(x)/(pi*x))/x
for (finv, f, finvh, fh, finvd, fd, fn) in ((:sec, :cos, :sech, :cosh, :secd, :cosd, "secant"),
(:csc, :sin, :csch, :sinh, :cscd, :sind, "cosecant"),
(:cot, :tan, :coth, :tanh, :cotd, :tand, "cotangent"))
name = string(finv)
hname = string(finvh)
dname = string(finvd)
@eval begin
@doc """
$($name)(x)
Compute the $($fn) of `x`, where `x` is in radians.
""" ($finv)(z::T) where {T<:Number} = one(T) / (($f)(z))
@doc """
$($hname)(x)
Compute the hyperbolic $($fn) of `x`.
""" ($finvh)(z::T) where {T<:Number} = one(T) / (($fh)(z))
@doc """
$($dname)(x)
Compute the $($fn) of `x`, where `x` is in degrees.
""" ($finvd)(z::T) where {T<:Number} = one(T) / (($fd)(z))
end
end
for (tfa, tfainv, hfa, hfainv, fn) in ((:asec, :acos, :asech, :acosh, "secant"),
(:acsc, :asin, :acsch, :asinh, "cosecant"),
(:acot, :atan, :acoth, :atanh, "cotangent"))
tname = string(tfa)
hname = string(hfa)
@eval begin
@doc """
$($tname)(x)
Compute the inverse $($fn) of `x`, where the output is in radians. """ ($tfa)(y::T) where {T<:Number} = ($tfainv)(one(T) / y)
@doc """
$($hname)(x)
Compute the inverse hyperbolic $($fn) of `x`. """ ($hfa)(y::T) where {T<:Number} = ($hfainv)(one(T) / y)
end
end
# multiply in extended precision
function deg2rad_ext(x::Float64)