-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
show.jl
1224 lines (1098 loc) · 39.5 KB
/
show.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
show(x) = show(STDOUT::IO, x)
print(io::IO, s::Symbol) = (write(io,s);nothing)
function show(io::IO, x::ANY)
t = typeof(x)::DataType
show(io, t)
print(io, '(')
if t.names !== () || t.size==0
recorded = false
oid = object_id(x)
shown_set = get(task_local_storage(), :SHOWNSET, nothing)
if shown_set == nothing
shown_set = Set()
task_local_storage(:SHOWNSET, shown_set)
end
try
if oid in shown_set
print(io, "#= circular reference =#")
else
push!(shown_set, oid)
recorded = true
n = length(t.names)
for i=1:n
f = t.names[i]
if !isdefined(x, f)
print(io, undef_ref_str)
else
show(io, x.(f))
end
if i < n
print(io, ',')
end
end
end
catch e
rethrow(e)
finally
if recorded delete!(shown_set, oid) end
end
else
nb = t.size
print(io, "0x")
p = pointer_from_objref(x) + sizeof(Ptr{Void})
for i=nb-1:-1:0
print(io, hex(unsafe_load(convert(Ptr{UInt8}, p+i)), 2))
end
end
print(io,')')
end
function show(io::IO, f::Function)
if isgeneric(f)
print(io, f.env.name)
elseif isdefined(f, :env) && isa(f.env,Symbol)
print(io, f.env)
else
print(io, "(anonymous function)")
end
end
function show(io::IO, x::IntrinsicFunction)
print(io, "(intrinsic function #", box(Int32,unbox(IntrinsicFunction,x)), ")")
end
function show(io::IO, x::UnionType)
if is(x,Top)
print(io, "Top")
else
print(io, "Union", x.types)
end
end
show(io::IO, x::TypeConstructor) = show(io, x.body)
function show(io::IO, x::DataType)
if isvarargtype(x)
print(io, x.parameters[1], "...")
else
print(io, x.name.name)
if length(x.parameters) > 0
show_comma_array(io, x.parameters, '{', '}')
end
end
end
showcompact(io::IO, x) = show(io, x)
showcompact(x) = showcompact(STDOUT::IO, x)
showcompact_lim(io, x) = _limit_output ? showcompact(io, x) : show(io, x)
showcompact_lim(io, x::Number) = _limit_output ? showcompact(io, x) : print(io, x)
macro show(exs...)
blk = Expr(:block)
for ex in exs
push!(blk.args, :(println($(sprint(show_unquoted,ex)*" = "),
repr(begin value=$(esc(ex)) end))))
end
if !isempty(exs); push!(blk.args, :value); end
return blk
end
show(io::IO, tn::TypeName) = print(io, tn.name)
show(io::IO, ::Void) = print(io, "nothing")
show(io::IO, b::Bool) = print(io, b ? "true" : "false")
show(io::IO, n::Signed) = (write(io, dec(n)); nothing)
show(io::IO, n::Unsigned) = print(io, "0x", hex(n,sizeof(n)<<1))
print(io::IO, n::Unsigned) = print(io, dec(n))
show{T}(io::IO, p::Ptr{T}) = print(io, typeof(p), " @0x$(hex(unsigned(p), WORD_SIZE>>2))")
function show(io::IO, p::Pair)
show(io, p.first)
print(io, "=>")
show(io, p.second)
end
function show(io::IO, m::Module)
if is(m,Main)
print(io, "Main")
else
print(io, join(fullname(m),"."))
end
end
function show(io::IO, l::LambdaStaticData)
print(io, "AST(")
show(io, uncompressed_ast(l))
print(io, ")")
end
function show_delim_array(io::IO, itr::AbstractArray, op, delim, cl, delim_one, compact=false)
print(io, op)
newline = true
first = true
i = 1
l = length(itr)
if l > 0
while true
if !isassigned(itr, i)
print(io, undef_ref_str)
multiline = false
else
x = itr[i]
multiline = isa(x,AbstractArray) && ndims(x)>1 && length(x)>0
newline && multiline && println(io)
compact ? showcompact_lim(io, x) : show(io, x)
end
i += 1
if i > l
delim_one && first && print(io, delim)
break
end
first = false
print(io, delim)
if multiline
println(io); println(io)
newline = false
else
newline = true
end
end
end
print(io, cl)
end
function show_delim_array(io::IO, itr, op, delim, cl, delim_one)
print(io, op)
state = start(itr)
newline = true
first = true
if !done(itr,state)
while true
x, state = next(itr,state)
multiline = isa(x,AbstractArray) && ndims(x)>1 && length(x)>0
newline && multiline && println(io)
show(io, x)
if done(itr,state)
delim_one && first && print(io, delim)
break
end
first = false
print(io, delim)
if multiline
println(io); println(io)
newline = false
else
newline = true
end
end
end
print(io, cl)
end
show_comma_array(io::IO, itr, o, c) = show_delim_array(io, itr, o, ',', c, false)
show(io::IO, t::Tuple) = show_delim_array(io, t, '(', ',', ')', true)
show(io::IO, s::Symbol) = show_unquoted(io, QuoteNode(s))
## Abstract Syntax Tree (AST) printing ##
# Summary:
# print(io, ex) defers to show_unquoted(io, ex)
# show(io, ex) defers to show_unquoted(io, QuoteNode(ex))
# show_unquoted(io, ex) does the heavy lifting
#
# AST printing should follow two rules:
# 1. parse(string(ex)) == ex
# 2. eval(parse(repr(ex))) == ex
#
# Rule 1 means that printing an expression should generate Julia code which
# could be reparsed to obtain the original expression. This code should be
# unambiguous and as readable as possible.
#
# Rule 2 means that showing an expression should generate a quoted version of
# print’s output. Parsing and then evaling this output should return the
# original expression.
#
# This is consistent with many other show methods, i.e.:
# show(Set([1,2,3])) # ==> "Set{Int64}([2,3,1])"
# eval(parse("Set{Int64}([2,3,1])”) # ==> An actual set
# While this isn’t true of ALL show methods, it is of all ASTs.
typealias ExprNode Union(Expr, QuoteNode, SymbolNode, LineNumberNode,
LabelNode, GotoNode, TopNode)
print (io::IO, ex::ExprNode) = show_unquoted(io, ex)
show (io::IO, ex::ExprNode) = show_unquoted(io, QuoteNode(ex))
show_unquoted(io::IO, ex) = show_unquoted(io, ex, 0, 0)
show_unquoted(io::IO, ex, indent::Int) = show_unquoted(io, ex, indent, 0)
show_unquoted(io::IO, ex, ::Int,::Int) = show(io, ex)
## AST printing constants ##
const indent_width = 4
const quoted_syms = Set{Symbol}([:(:),:(::),:(:=),:(=),:(==),:(===),:(=>)])
const uni_ops = Set{Symbol}([:(+), :(-), :(!), :(¬), :(~), :(<:), :(>:), :(√), :(∛), :(∜)])
const expr_infix_wide = Set([:(=), :(+=), :(-=), :(*=), :(/=), :(\=), :(&=),
:(|=), :($=), :(>>>=), :(>>=), :(<<=), :(&&), :(||)])
const expr_infix = Set([:(:), :(<:), :(->), :(=>), symbol("::")])
const expr_calls = Dict(:call =>('(',')'), :calldecl =>('(',')'), :ref =>('[',']'), :curly =>('{','}'))
const expr_parens = Dict(:tuple=>('(',')'), :vcat=>('[',']'), :cell1d=>("Any[","]"),
:hcat =>('[',']'), :row =>('[',']'))
## AST decoding helpers ##
is_id_start_char(c::Char) = ccall(:jl_id_start_char, Cint, (UInt32,), c) != 0
is_id_char(c::Char) = ccall(:jl_id_char, Cint, (UInt32,), c) != 0
function isidentifier(s::AbstractString)
i = start(s)
done(s, i) && return false
(c, i) = next(s, i)
is_id_start_char(c) || return false
while !done(s, i)
(c, i) = next(s, i)
is_id_char(c) || return false
end
return true
end
isoperator(s::Symbol) = ccall(:jl_is_operator, Cint, (Ptr{UInt8},), s) != 0
operator_precedence(s::Symbol) = int(ccall(:jl_operator_precedence,
Cint, (Ptr{UInt8},), s))
operator_precedence(x::Any) = 0 # fallback for generic expression nodes
const prec_power = operator_precedence(:(^))
is_expr(ex, head::Symbol) = (isa(ex, Expr) && (ex.head == head))
is_expr(ex, head::Symbol, n::Int) = is_expr(ex, head) && length(ex.args) == n
is_linenumber(ex::LineNumberNode) = true
is_linenumber(ex::Expr) = is(ex.head, :line)
is_linenumber(ex) = false
is_quoted(ex) = false
is_quoted(ex::QuoteNode) = true
is_quoted(ex::Expr) = is_expr(ex, :quote, 1)
unquoted(ex::QuoteNode) = ex.value
unquoted(ex::Expr) = ex.args[1]
## AST printing helpers ##
const indent_width = 4
function show_expr_type(io::IO, ty)
if !is(ty, Any)
if is(ty, Function)
print(io, "::F")
elseif is(ty, IntrinsicFunction)
print(io, "::I")
else
print(io, "::$ty")
end
end
end
show_linenumber(io::IO, line) = print(io," # line ",line,':')
show_linenumber(io::IO, line, file) = print(io," # ",file,", line ",line,':')
# show a block, e g if/for/etc
function show_block(io::IO, head, args::Vector, body, indent::Int)
print(io, head, ' ')
show_list(io, args, ", ", indent)
ind = is(head, :module) || is(head, :baremodule) ? indent : indent + indent_width
exs = (is_expr(body, :block) || is_expr(body, :body)) ? body.args : Any[body]
for ex in exs
if !is_linenumber(ex); print(io, '\n', " "^ind); end
show_unquoted(io, ex, ind)
end
print(io, '\n', " "^indent)
end
show_block(io::IO,head, block,i::Int) = show_block(io,head, [], block,i)
function show_block(io::IO, head, arg, block, i::Int)
if is_expr(arg, :block)
show_block(io, head, arg.args, block, i)
else
show_block(io, head, Any[arg], block, i)
end
end
# show an indented list
function show_list(io::IO, items, sep, indent::Int, prec::Int=0)
n = length(items)
if n == 0; return end
indent += indent_width
show_unquoted(io, items[1], indent, prec)
for item in items[2:end]
print(io, sep)
show_unquoted(io, item, indent, prec)
end
end
# show an indented list inside the parens (op, cl)
function show_enclosed_list(io::IO, op, items, sep, cl, indent, prec=0)
print(io, op); show_list(io, items, sep, indent, prec); print(io, cl)
end
# show a normal (non-operator) function call, e.g. f(x,y) or A[z]
function show_call(io::IO, head, func, func_args, indent)
op, cl = expr_calls[head]
if isa(func, Symbol) || (isa(func, Expr) && func.head == :.)
show_unquoted(io, func, indent)
else
print(io, '(')
show_unquoted(io, func, indent)
print(io, ')')
end
if !isempty(func_args) && isa(func_args[1], Expr) && func_args[1].head === :parameters
print(io, op)
show_list(io, func_args[2:end], ',', indent, 0)
print(io, "; ")
show_list(io, func_args[1].args, ',', indent, 0)
print(io, cl)
else
show_enclosed_list(io, op, func_args, ",", cl, indent)
end
end
## AST printing ##
show_unquoted(io::IO, sym::Symbol, ::Int, ::Int) = print(io, sym)
show_unquoted(io::IO, ex::LineNumberNode, ::Int, ::Int) = show_linenumber(io, ex.line)
show_unquoted(io::IO, ex::LabelNode, ::Int, ::Int) = print(io, ex.label, ": ")
show_unquoted(io::IO, ex::GotoNode, ::Int, ::Int) = print(io, "goto ", ex.label)
show_unquoted(io::IO, ex::TopNode, ::Int, ::Int) = print(io,"top(",ex.name,')')
function show_unquoted(io::IO, ex::SymbolNode, ::Int, ::Int)
print(io, ex.name)
show_expr_type(io, ex.typ)
end
show_unquoted(io::IO, ex::QuoteNode, indent::Int, prec::Int) =
show_unquoted_quote_expr(io, ex.value, indent, prec)
function show_unquoted_quote_expr(io::IO, value, indent::Int, prec::Int)
if isa(value, Symbol) && !(value in quoted_syms)
s = string(value)
if isidentifier(s) || isoperator(value)
print(io, ":")
print(io, value)
else
print(io, "symbol(\"", escape_string(s), "\")")
end
else
if isa(value,Expr) && value.head === :block
show_block(io, "quote", value, indent)
print(io, "end")
else
print(io, ":(")
show_unquoted(io, value, indent+indent_width, 0)
print(io, ")")
end
end
end
# TODO: implement interpolated strings
function show_unquoted(io::IO, ex::Expr, indent::Int, prec::Int)
head, args, nargs = ex.head, ex.args, length(ex.args)
# dot (i.e. "x.y")
if is(head, :(.))
show_unquoted(io, args[1], indent + indent_width)
print(io, '.')
if is_quoted(args[2])
show_unquoted(io, unquoted(args[2]), indent + indent_width)
else
print(io, '(')
show_unquoted(io, args[2], indent + indent_width)
print(io, ')')
end
# infix (i.e. "x<:y" or "x = y")
elseif (head in expr_infix && nargs==2) || (is(head,:(:)) && nargs==3)
show_list(io, args, head, indent)
elseif head in expr_infix_wide && nargs == 2
func_prec = operator_precedence(head)
if func_prec < prec
show_enclosed_list(io, '(', args, " $head ", ')', indent, func_prec)
else
show_list(io, args, " $head ", indent, func_prec)
end
# list (i.e. "(1,2,3)" or "[1,2,3]")
elseif haskey(expr_parens, head) # :tuple/:vcat/:cell1d
op, cl = expr_parens[head]
if head === :vcat && !isempty(args) && is_expr(args[1], :row)
sep = ";"
elseif head === :hcat || head === :row
sep = " "
else
sep = ","
end
head !== :row && print(io, op)
show_list(io, args, sep, indent)
if is(head, :tuple) && nargs == 1; print(io, ','); end
head !== :row && print(io, cl)
# function declaration (like :call but always printed with parens)
# (:calldecl is a "fake" expr node created when we find a :function expr)
elseif head == :calldecl && nargs >= 1
show_call(io, head, args[1], args[2:end], indent)
# function call
elseif haskey(expr_calls, head) && nargs >= 1 # :call/:ref/:curly
func = args[1]
func_prec = operator_precedence(func)
func_args = args[2:end]
# scalar multiplication (i.e. "100x")
if (func == :(*) && length(func_args)==2 &&
isa(func_args[1], Real) && isa(func_args[2], Symbol))
if func_prec <= prec
show_enclosed_list(io, '(', func_args, "", ')', indent, func_prec)
else
show_list(io, func_args, "", indent, func_prec)
end
# unary operator (i.e. "!z")
elseif func in uni_ops && length(func_args) == 1
show_unquoted(io, func, indent)
if isa(func_args[1], Expr) || length(func_args) > 1
show_enclosed_list(io, '(', func_args, ",", ')', indent, func_prec)
else
show_unquoted(io, func_args[1])
end
# binary operator (i.e. "x + y")
elseif func_prec > 0 # is a binary operator
if length(func_args) > 1
sep = func_prec >= prec_power ? "$func" : " $func "
if func_prec <= prec
show_enclosed_list(io, '(', func_args, sep, ')', indent, func_prec)
else
show_list(io, func_args, sep, indent, func_prec)
end
else
# 1-argument call to normally-binary operator
op, cl = expr_calls[head]
print(io, "(")
show_unquoted(io, func, indent)
print(io, ")")
show_enclosed_list(io, op, func_args, ",", cl, indent)
end
# normal function (i.e. "f(x,y)" or "A[x,y]")
else
show_call(io, head, func, func_args, indent)
end
# typed comprehension
elseif is(head, :typed_comprehension) && length(args) == 3
show_unquoted(io, args[1], indent)
print(io, '[')
show_unquoted(io, args[2], indent)
print(io, " for ")
show_unquoted(io, args[3], indent)
print(io, ']')
elseif is(head, :ccall)
show_unquoted(io, :ccall, indent)
show_enclosed_list(io, '(', args, ",", ')', indent)
# comparison (i.e. "x < y < z")
elseif is(head, :comparison) && nargs >= 3 && (nargs&1==1)
comp_prec = minimum(operator_precedence, args[2:2:end])
if comp_prec <= prec
show_enclosed_list(io, '(', args, " ", ')', indent, comp_prec)
else
show_list(io, args, " ", indent, comp_prec)
end
# function calls need to transform the function from :call to :calldecl
# so that operators are printed correctly
elseif head == :function && nargs==2 && is_expr(args[1], :call)
show_block(io, head, Expr(:calldecl, args[1].args...), args[2], indent)
print(io, "end")
# block with argument
elseif head in (:for,:while,:function,:if) && nargs==2
show_block(io, head, args[1], args[2], indent); print(io, "end")
elseif is(head, :module) && nargs==3 && isa(args[1],Bool)
show_block(io, args[1] ? :module : :baremodule, args[2], args[3], indent); print(io, "end")
# type declaration
elseif is(head, :type) && nargs==3
show_block(io, args[1] ? :type : :immutable, args[2], args[3], indent)
print(io, "end")
# empty return (i.e. "function f() return end")
elseif is(head, :return) && nargs == 1 && is(args[1], nothing)
print(io, head)
# type annotation (i.e. "::Int")
elseif is(head, symbol("::")) && nargs == 1
print(io, "::")
show_unquoted(io, args[1], indent)
# var-arg declaration or expansion
# (i.e. "function f(L...) end" or "f(B...)")
elseif is(head, :(...)) && nargs == 1
show_unquoted(io, args[1], indent)
print(io, "...")
elseif (nargs == 1 && head in (:return, :abstract, :const)) ||
head in (:local, :global, :export)
print(io, head, ' ')
show_list(io, args, ", ", indent)
elseif is(head, :macrocall) && nargs >= 1
show_list(io, args, ' ', indent)
elseif is(head, :typealias) && nargs == 2
print(io, "typealias ")
show_list(io, args, ' ', indent)
elseif is(head, :line) && 1 <= nargs <= 2
show_linenumber(io, args...)
elseif is(head, :if) && nargs == 3 # if/else
show_block(io, "if", args[1], args[2], indent)
show_block(io, "else", args[3], indent)
print(io, "end")
elseif is(head, :try) && 3 <= nargs <= 4
show_block(io, "try", args[1], indent)
if is_expr(args[3], :block)
show_block(io, "catch", is(args[2], false) ? Any[] : args[2], args[3], indent)
end
if nargs >= 4 && is_expr(args[4], :block)
show_block(io, "finally", Any[], args[4], indent)
end
print(io, "end")
elseif is(head, :let) && nargs >= 1
show_block(io, "let", args[2:end], args[1], indent); print(io, "end")
elseif is(head, :block) || is(head, :body)
show_block(io, "begin", ex, indent); print(io, "end")
elseif is(head, :quote) && nargs == 1
show_unquoted_quote_expr(io, args[1], indent, 0)
elseif is(head, :gotoifnot) && nargs == 2
print(io, "unless ")
show_list(io, args, " goto ", indent)
elseif is(head, :string) && nargs == 1 && isa(args[1], AbstractString)
show(io, args[1])
elseif is(head, :null)
print(io, "nothing")
elseif is(head, :kw) && length(args)==2
show_unquoted(io, args[1], indent+indent_width)
print(io, '=')
show_unquoted(io, args[2], indent+indent_width)
elseif is(head, :string)
a = map(args) do x
if !isa(x,AbstractString)
if isa(x,Symbol) && !(x in quoted_syms)
string("\$", x)
else
string("\$(", sprint(show_unquoted,x), ")")
end
else
sprint(print_escaped, x, "\"\$")
end
end
print(io, '"', a..., '"')
elseif is(head, :&) && length(args) == 1
print(io, '&')
show_unquoted(io, args[1])
# transpose
elseif is(head, symbol('\'')) && length(args) == 1
show_unquoted(io, args[1])
print(io, '\'')
elseif is(head, :import) || is(head, :importall) || is(head, :using)
print(io, head)
first = true
for a = args
if first
print(io, ' ')
first = false
else
print(io, '.')
end
if !is(a, :.)
print(io, a)
end
end
# print anything else as "Expr(head, args...)"
else
print(io, "\$(Expr(")
show(io, ex.head)
for arg in args
print(io, ", ")
show(io, arg)
end
print(io, "))")
end
show_expr_type(io, ex.typ)
end
# dump & xdump - structured tree representation like R's str()
# - dump is for the user-facing structure
# - xdump is for the internal structure
#
# x is the object
# n is the depth of traversal in nested types (5 is the default)
# indent is a character string of spaces that is incremented at
# each descent.
#
# Package writers may overload dump for other nested types like lists
# or DataFrames. If overloaded, check the nesting level (n), and if
# n > 0, dump each component. Limit to the first 10 entries. When
# dumping components, decrement n, and add two spaces to indent.
#
# Package writers should not overload xdump.
function xdump(fn::Function, io::IO, x, n::Int, indent)
T = typeof(x)
print(io, T, " ")
if isa(T, DataType) && length(T.names) > 0
println(io)
if n > 0
for field in T.names
if field != symbol("") # prevents segfault if symbol is blank
print(io, indent, " ", field, ": ")
if isdefined(x,field)
fn(io, getfield(x, field), n - 1, string(indent, " "))
else
println(io, undef_ref_str)
end
end
end
end
else
println(io, x)
end
end
function xdump(fn::Function, io::IO, x::Module, n::Int, indent)
print(io, Module, " ")
println(io, x)
end
function xdump_elts(fn::Function, io::IO, x::Array{Any}, n::Int, indent, i0, i1)
for i in i0:i1
print(io, indent, " ", i, ": ")
if !isdefined(x,i)
println(io, undef_ref_str)
else
fn(io, x[i], n - 1, string(indent, " "))
end
end
end
function xdump(fn::Function, io::IO, x::Array{Any}, n::Int, indent)
println(io, "Array($(eltype(x)),$(size(x)))")
if n > 0
xdump_elts(fn, io, x, n, indent, 1, (length(x) <= 10 ? length(x) : 5))
if length(x) > 10
println(io, indent, " ...")
xdump_elts(fn, io, x, n, indent, length(x)-4, length(x))
end
end
end
xdump(fn::Function, io::IO, x::Symbol, n::Int, indent) = println(io, typeof(x), " ", x)
xdump(fn::Function, io::IO, x::Function, n::Int, indent) = println(io, x)
xdump(fn::Function, io::IO, x::Array, n::Int, indent) =
(print(io, "Array($(eltype(x)),$(size(x))) ");
show(io, x); println(io))
# Types
xdump(fn::Function, io::IO, x::UnionType, n::Int, indent) = println(io, x)
function xdump(fn::Function, io::IO, x::DataType, n::Int, indent)
println(io, x, "::", typeof(x), " ", " <: ", super(x))
if n > 0
for idx in 1:min(10,length(x.names))
if x.names[idx] != symbol("") # prevents segfault if symbol is blank
print(io, indent, " ", x.names[idx], "::")
if isa(x.types[idx], DataType)
xdump(fn, io, x.types[idx], n - 1, string(indent, " "))
else
println(io, x.types[idx])
end
end
end
if length(x.names) > 10
println(io, indent, " ...")
end
end
end
# dumptype is for displaying abstract type hierarchies like Jameson
# Nash's wiki page: https://github.com/JuliaLang/julia/wiki/Types-Hierarchy
function dumptype(io::IO, x, n::Int, indent)
# based on Jameson Nash's examples/typetree.jl
println(io, x)
if n == 0 # too deeply nested
return
end
typargs(t) = split(string(t), "{")[1]
# todo: include current module?
for m in (Core, Base)
for s in names(m)
if isdefined(m,s)
t = eval(m,s)
if isa(t, TypeConstructor)
if string(x.name) == typargs(t) ||
("Union" == split(string(t), "(")[1] &&
any(map(tt -> string(x.name) == typargs(tt), t.body.types)))
targs = join(t.parameters, ",")
println(io, indent, " ", s,
length(t.parameters) > 0 ? "{$targs}" : "",
" = ", t)
end
elseif isa(t, UnionType)
if any(tt -> string(x.name) == typargs(tt), t.types)
println(io, indent, " ", s, " = ", t)
end
elseif isa(t, DataType) && super(t).name == x.name
# type aliases
if string(s) != string(t.name)
println(io, indent, " ", s, " = ", t.name)
elseif t != Any
print(io, indent, " ")
dump(io, t, n - 1, string(indent, " "))
end
end
end
end
end
end
# For abstract types, use _dumptype only if it's a form that will be called
# interactively.
xdump(fn::Function, io::IO, x::DataType) = x.abstract ? dumptype(io, x, 5, "") : xdump(fn, io, x, 5, "")
xdump(fn::Function, io::IO, x::DataType, n::Int) = x.abstract ? dumptype(io, x, n, "") : xdump(fn, io, x, n, "")
# defaults:
xdump(fn::Function, io::IO, x) = xdump(xdump, io, x, 5, "") # default is 5 levels
xdump(fn::Function, io::IO, x, n::Int) = xdump(xdump, io, x, n, "")
xdump(fn::Function, io::IO, args...) = error("invalid arguments to xdump")
xdump(fn::Function, args...) = xdump(fn, STDOUT::IO, args...)
xdump(io::IO, args...) = xdump(xdump, io, args...)
xdump(args...) = with_output_limit(()->xdump(xdump, STDOUT::IO, args...), true)
# Here are methods specifically for dump:
dump(io::IO, x, n::Int) = dump(io, x, n, "")
dump(io::IO, x) = dump(io, x, 5, "") # default is 5 levels
dump(io::IO, x::AbstractString, n::Int, indent) =
(print(io, typeof(x), " ");
show(io, x); println(io))
dump(io::IO, x, n::Int, indent) = xdump(dump, io, x, n, indent)
dump(io::IO, args...) = error("invalid arguments to dump")
dump(args...) = with_output_limit(()->dump(STDOUT::IO, args...), true)
function dump(io::IO, x::Dict, n::Int, indent)
println(io, typeof(x), " len ", length(x))
if n > 0
i = 1
for (k,v) in x
print(io, indent, " ", k, ": ")
dump(io, v, n - 1, string(indent, " "))
if i > 10
println(io, indent, " ...")
break
end
i += 1
end
end
end
# More generic representation for common types:
dump(io::IO, x::DataType, n::Int, indent) = println(io, x.name)
dump(io::IO, x::DataType, n::Int) = dump(io, x, n, "")
dump(io::IO, x::DataType) = dump(io, x, 5, "")
dump(io::IO, x::TypeVar, n::Int, indent) = println(io, x.name)
alignment(x::Any) = (0, length(sprint(showcompact_lim, x)))
alignment(x::Number) = (length(sprint(showcompact_lim, x)), 0)
alignment(x::Integer) = (length(sprint(showcompact_lim, x)), 0)
function alignment(x::Real)
m = match(r"^(.*?)((?:[\.eE].*)?)$", sprint(showcompact_lim, x))
m == nothing ? (length(sprint(showcompact_lim, x)), 0) :
(length(m.captures[1]), length(m.captures[2]))
end
function alignment(x::Complex)
m = match(r"^(.*[\+\-])(.*)$", sprint(showcompact_lim, x))
m == nothing ? (length(sprint(showcompact_lim, x)), 0) :
(length(m.captures[1]), length(m.captures[2]))
end
function alignment(x::Rational)
m = match(r"^(.*?/)(/.*)$", sprint(showcompact_lim, x))
m == nothing ? (length(sprint(showcompact_lim, x)), 0) :
(length(m.captures[1]), length(m.captures[2]))
end
const undef_ref_str = "#undef"
const undef_ref_alignment = (3,3)
function alignment(
X::AbstractVecOrMat,
rows::AbstractVector, cols::AbstractVector,
cols_if_complete::Integer, cols_otherwise::Integer, sep::Integer
)
a = []
for j in cols
l = r = 0
for i in rows
if isassigned(X,i,j)
aij = alignment(X[i,j])
else
aij = undef_ref_alignment
end
l = max(l, aij[1])
r = max(r, aij[2])
end
push!(a, (l, r))
if length(a) > 1 && sum(map(sum,a)) + sep*length(a) >= cols_if_complete
pop!(a)
break
end
end
if 1 < length(a) < size(X,2)
while sum(map(sum,a)) + sep*length(a) >= cols_otherwise
pop!(a)
end
end
return a
end
function print_matrix_row(io::IO,
X::AbstractVecOrMat, A::Vector,
i::Integer, cols::AbstractVector, sep::AbstractString
)
for k = 1:length(A)
j = cols[k]
if isassigned(X,i,j)
x = X[i,j]
a = alignment(x)
sx = sprint(showcompact_lim, x)
else
a = undef_ref_alignment
sx = undef_ref_str
end
l = repeat(" ", A[k][1]-a[1])
r = repeat(" ", A[k][2]-a[2])
print(io, l, sx, r)
if k < length(A); print(io, sep); end
end
end
function print_matrix_vdots(io::IO,
vdots::AbstractString, A::Vector, sep::AbstractString, M::Integer, m::Integer
)
for k = 1:length(A)
w = A[k][1] + A[k][2]
if k % M == m
l = repeat(" ", max(0, A[k][1]-length(vdots)))
r = repeat(" ", max(0, w-length(vdots)-length(l)))
print(io, l, vdots, r)
else
print(io, repeat(" ", w))
end
if k < length(A); print(io, sep); end
end
end
function print_matrix(io::IO, X::AbstractVecOrMat,
sz::(Integer, Integer) = (s = tty_size(); (s[1]-4, s[2])),
pre::AbstractString = " ",
sep::AbstractString = " ",
post::AbstractString = "",
hdots::AbstractString = " \u2026 ",
vdots::AbstractString = "\u22ee",
ddots::AbstractString = " \u22f1 ",
hmod::Integer = 5, vmod::Integer = 5)
rows, cols = sz
cols -= length(pre) + length(post)
presp = repeat(" ", length(pre))
postsp = ""
@assert strwidth(hdots) == strwidth(ddots)
ss = length(sep)
m, n = size(X,1), size(X,2)
if m <= rows # rows fit
A = alignment(X,1:m,1:n,cols,cols,ss)
if n <= length(A) # rows and cols fit
for i = 1:m
print(io, i == 1 ? pre : presp)
print_matrix_row(io, X,A,i,1:n,sep)
print(io, i == m ? post : postsp)
if i != m; println(io, ); end
end
else # rows fit, cols don't
c = div(cols-length(hdots)+1,2)+1
R = reverse(alignment(X,1:m,n:-1:1,c,c,ss))
c = cols - sum(map(sum,R)) - (length(R)-1)*ss - length(hdots)
L = alignment(X,1:m,1:n,c,c,ss)
for i = 1:m
print(io, i == 1 ? pre : presp)
print_matrix_row(io, X,L,i,1:length(L),sep)
print(io, i % hmod == 1 ? hdots : repeat(" ", length(hdots)))
print_matrix_row(io, X,R,i,n-length(R)+1:n,sep)
print(io, i == m ? post : postsp)
if i != m; println(io, ); end
end
end
else # rows don't fit
t = div(rows,2)
I = [1:t; m-div(rows-1,2)+1:m]
A = alignment(X,I,1:n,cols,cols,ss)
if n <= length(A) # rows don't fit, cols do
for i in I
print(io, i == 1 ? pre : presp)
print_matrix_row(io, X,A,i,1:n,sep)
print(io, i == m ? post : postsp)
if i != I[end]; println(io, ); end
if i == t
print(io, i == 1 ? pre : presp)
print_matrix_vdots(io, vdots,A,sep,vmod,1)
println(io, i == m ? post : postsp)
end
end
else # neither rows nor cols fit
c = div(cols-length(hdots)+1,2)+1
R = reverse(alignment(X,I,n:-1:1,c,c,ss))
c = cols - sum(map(sum,R)) - (length(R)-1)*ss - length(hdots)
L = alignment(X,I,1:n,c,c,ss)
r = mod((length(R)-n+1),vmod)
for i in I
print(io, i == 1 ? pre : presp)
print_matrix_row(io, X,L,i,1:length(L),sep)
print(io, i % hmod == 1 ? hdots : repeat(" ", length(hdots)))
print_matrix_row(io, X,R,i,n-length(R)+1:n,sep)
print(io, i == m ? post : postsp)
if i != I[end]; println(io, ); end
if i == t
print(io, i == 1 ? pre : presp)
print_matrix_vdots(io, vdots,L,sep,vmod,1)
print(io, ddots)
print_matrix_vdots(io, vdots,R,sep,vmod,r)
println(io, i == m ? post : postsp)
end
end
end
end
end
summary(x) = string(typeof(x))