-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
abstractinterpretation.jl
1239 lines (1195 loc) · 50.1 KB
/
abstractinterpretation.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. License is MIT: https://julialang.org/license
#############
# constants #
#############
const CoreNumType = Union{Int32, Int64, Float32, Float64}
const _REF_NAME = Ref.body.name
#########
# logic #
#########
# see if the inference result might affect the final answer
call_result_unused(frame::InferenceState, pc::LineNum=frame.currpc) =
isexpr(frame.src.code[frame.currpc], :call) && isempty(frame.ssavalue_uses[pc])
function abstract_call_gf_by_type(@nospecialize(f), argtypes::Vector{Any}, @nospecialize(atype), sv::InferenceState,
max_methods = sv.params.MAX_METHODS)
atype_params = unwrap_unionall(atype).parameters
ft = unwrap_unionall(atype_params[1]) # TODO: ccall jl_first_argument_datatype here
isa(ft, DataType) || return Any # the function being called is unknown. can't properly handle this backedge right now
ftname = ft.name
isdefined(ftname, :mt) || return Any # not callable. should be Bottom, but can't track this backedge right now
if ftname === _TYPE_NAME
tname = ft.parameters[1]
if isa(tname, TypeVar)
tname = tname.ub
end
tname = unwrap_unionall(tname)
if !isa(tname, DataType)
# can't track the backedge to the ctor right now
# for things like Union
return Any
end
end
min_valid = UInt[typemin(UInt)]
max_valid = UInt[typemax(UInt)]
splitunions = 1 < countunionsplit(atype_params) <= sv.params.MAX_UNION_SPLITTING
if splitunions
splitsigs = switchtupleunion(atype)
applicable = Any[]
for sig_n in splitsigs
xapplicable = _methods_by_ftype(sig_n, max_methods, sv.params.world, min_valid, max_valid)
xapplicable === false && return Any
append!(applicable, xapplicable)
end
else
applicable = _methods_by_ftype(atype, max_methods, sv.params.world, min_valid, max_valid)
if applicable === false
# this means too many methods matched
# (assume this will always be true, so we don't compute / update valid age in this case)
return Any
end
end
update_valid_age!(min_valid[1], max_valid[1], sv)
applicable = applicable::Array{Any,1}
napplicable = length(applicable)
rettype = Bottom
edgecycle = false
edges = Any[]
nonbot = 0 # the index of the only non-Bottom inference result if > 0
seen = 0 # number of signatures actually inferred
istoplevel = sv.linfo.def isa Module
for i in 1:napplicable
match = applicable[i]::SimpleVector
method = match[3]::Method
sig = match[1]
if istoplevel && !isdispatchtuple(sig)
# only infer concrete call sites in top-level expressions
rettype = Any
break
end
sigtuple = unwrap_unionall(sig)::DataType
splitunions = false
this_rt = Bottom
# TODO: splitunions = 1 < countunionsplit(sigtuple.parameters) * napplicable <= sv.params.MAX_UNION_SPLITTING
# currently this triggers a bug in inference recursion detection
if splitunions
splitsigs = switchtupleunion(sig)
for sig_n in splitsigs
rt, edgecycle1, edge = abstract_call_method(method, sig_n, svec(), sv)
if edge !== nothing
push!(edges, edge)
end
edgecycle |= edgecycle1::Bool
this_rt = tmerge(this_rt, rt)
this_rt === Any && break
end
else
this_rt, edgecycle, edge = abstract_call_method(method, sig, match[2]::SimpleVector, sv)
if edge !== nothing
push!(edges, edge)
end
end
if this_rt !== Bottom
if nonbot === 0
nonbot = i
else
nonbot = -1
end
end
seen += 1
rettype = tmerge(rettype, this_rt)
rettype === Any && break
end
# try constant propagation if only 1 method is inferred to non-Bottom
# this is in preparation for inlining, or improving the return result
if nonbot > 0 && seen == napplicable && !edgecycle && isa(rettype, Type) && sv.params.ipo_constant_propagation
# if there's a possibility we could constant-propagate a better result
# (hopefully without doing too much work), try to do that now
# TODO: it feels like this could be better integrated into abstract_call_method / typeinf_edge
const_rettype = abstract_call_method_with_const_args(rettype, f, argtypes, applicable[nonbot]::SimpleVector, sv)
if const_rettype ⊑ rettype
# use the better result, if it's a refinement of rettype
rettype = const_rettype
end
end
if call_result_unused(sv) && !(rettype === Bottom)
# We're mainly only here because the optimizer might want this code,
# but we ourselves locally don't typically care about it locally
# (beyond checking if it always throws).
# So avoid adding an edge, since we don't want to bother attempting
# to improve our result even if it does change (to always throw),
# and avoid keeping track of a more complex result type.
rettype = Any
end
if !(rettype === Any) # adding a new method couldn't refine (widen) this type
for edge in edges
add_backedge!(edge::MethodInstance, sv)
end
fullmatch = false
for i in napplicable:-1:1
match = applicable[i]::SimpleVector
method = match[3]::Method
if atype <: method.sig
fullmatch = true
break
end
end
if !fullmatch
# also need an edge to the method table in case something gets
# added that did not intersect with any existing method
add_mt_backedge!(ftname.mt, atype, sv)
end
end
#print("=> ", rettype, "\n")
return rettype
end
function const_prop_profitable(@nospecialize(arg))
# have new information from argtypes that wasn't available from the signature
if isa(arg, PartialStruct)
for b in arg.fields
isconstType(b) && return true
const_prop_profitable(b) && return true
end
elseif !isa(arg, Const) || (isa(arg.val, Symbol) || isa(arg.val, Type) || (!isa(arg.val, String) && isimmutable(arg.val)))
# don't consider mutable values or Strings useful constants
return true
end
return false
end
function abstract_call_method_with_const_args(@nospecialize(rettype), @nospecialize(f), argtypes::Vector{Any}, match::SimpleVector, sv::InferenceState)
method = match[3]::Method
nargs::Int = method.nargs
method.isva && (nargs -= 1)
length(argtypes) >= nargs || return Any
haveconst = false
for a in argtypes
a = widenconditional(a)
if has_nontrivial_const_info(a)
haveconst = const_prop_profitable(a)
haveconst && break
end
end
haveconst || improvable_via_constant_propagation(rettype) || return Any
sig = match[1]
sparams = match[2]::SimpleVector
code = code_for_method(method, sig, sparams, sv.params.world)
code === nothing && return Any
code = code::MethodInstance
# decide if it's likely to be worthwhile
declared_inline = isdefined(method, :source) && ccall(:jl_ast_flag_inlineable, Bool, (Any,), method.source)
cache_inlineable = declared_inline
if isdefined(code, :inferred) && !cache_inlineable
cache_inf = code.inferred
if !(cache_inf === nothing)
cache_src_inferred = ccall(:jl_ast_flag_inferred, Bool, (Any,), cache_inf)
cache_src_inlineable = ccall(:jl_ast_flag_inlineable, Bool, (Any,), cache_inf)
cache_inlineable = cache_src_inferred && cache_src_inlineable
end
end
if !cache_inlineable && !sv.params.aggressive_constant_propagation
tm = _topmod(sv)
if !istopfunction(f, :getproperty) && !istopfunction(f, :setproperty!)
# in this case, see if all of the arguments are constants
for a in argtypes
a = widenconditional(a)
if !isa(a, Const) && !isconstType(a) && !isa(a, PartialStruct)
return Any
end
end
end
end
inf_result = cache_lookup(code, argtypes, sv.params.cache)
if inf_result === nothing
inf_result = InferenceResult(code, argtypes)
frame = InferenceState(inf_result, #=cache=#false, sv.params)
frame.limited = true
frame.parent = sv
push!(sv.params.cache, inf_result)
typeinf(frame) || return Any
end
result = inf_result.result
isa(result, InferenceState) && return Any # TODO: is this recursive constant inference?
add_backedge!(inf_result.linfo, sv)
return result
end
function abstract_call_method(method::Method, @nospecialize(sig), sparams::SimpleVector, sv::InferenceState)
if method.name === :depwarn && isdefined(Main, :Base) && method.module === Main.Base
return Any, false, nothing
end
topmost = nothing
# Limit argument type tuple growth of functions:
# look through the parents list to see if there's a call to the same method
# and from the same method.
# Returns the topmost occurrence of that repeated edge.
cyclei = 0
infstate = sv
edgecycle = false
# The `method_for_inference_heuristics` will expand the given method's generator if
# necessary in order to retrieve this field from the generated `CodeInfo`, if it exists.
# The other `CodeInfo`s we inspect will already have this field inflated, so we just
# access it directly instead (to avoid regeneration).
method2 = method_for_inference_heuristics(method, sig, sparams, sv.params.world) # Union{Method, Nothing}
sv_method2 = sv.src.method_for_inference_limit_heuristics # limit only if user token match
sv_method2 isa Method || (sv_method2 = nothing) # Union{Method, Nothing}
while !(infstate === nothing)
infstate = infstate::InferenceState
if method === infstate.linfo.def
if infstate.linfo.specTypes == sig
# avoid widening when detecting self-recursion
# TODO: merge call cycle and return right away
if call_result_unused(sv)
# since we don't use the result (typically),
# we have a self-cycle in the call-graph, but not in the inference graph (typically):
# break this edge now (before we record it) by returning early
# (non-typically, this means that we lose the ability to detect a guaranteed StackOverflow in some cases)
return Any, false, nothing
end
topmost = nothing
edgecycle = true
break
end
inf_method2 = infstate.src.method_for_inference_limit_heuristics # limit only if user token match
inf_method2 isa Method || (inf_method2 = nothing) # Union{Method, Nothing}
if topmost === nothing && method2 === inf_method2
# inspect the parent of this edge,
# to see if they are the same Method as sv
# in which case we'll need to ensure it is convergent
# otherwise, we don't
for parent in infstate.callers_in_cycle
# check in the cycle list first
# all items in here are mutual parents of all others
parent_method2 = parent.src.method_for_inference_limit_heuristics # limit only if user token match
parent_method2 isa Method || (parent_method2 = nothing) # Union{Method, Nothing}
if parent.linfo.def === sv.linfo.def && sv_method2 === parent_method2
topmost = infstate
edgecycle = true
break
end
end
let parent = infstate.parent
# then check the parent link
if topmost === nothing && parent !== nothing
parent = parent::InferenceState
parent_method2 = parent.src.method_for_inference_limit_heuristics # limit only if user token match
parent_method2 isa Method || (parent_method2 = nothing) # Union{Method, Nothing}
if (parent.cached || parent.limited) && parent.linfo.def === sv.linfo.def && sv_method2 === parent_method2
topmost = infstate
edgecycle = true
end
end
end
end
end
# iterate through the cycle before walking to the parent
if cyclei < length(infstate.callers_in_cycle)
cyclei += 1
infstate = infstate.callers_in_cycle[cyclei]
else
cyclei = 0
infstate = infstate.parent
end
end
if !(topmost === nothing)
topmost = topmost::InferenceState
sigtuple = unwrap_unionall(sig)::DataType
msig = unwrap_unionall(method.sig)::DataType
spec_len = length(msig.parameters) + 1
ls = length(sigtuple.parameters)
if method === sv.linfo.def
# Under direct self-recursion, permit much greater use of reducers.
# here we assume that complexity(specTypes) :>= complexity(sig)
comparison = sv.linfo.specTypes
l_comparison = length(unwrap_unionall(comparison).parameters)
spec_len = max(spec_len, l_comparison)
else
comparison = method.sig
end
# see if the type is actually too big (relative to the caller), and limit it if required
newsig = limit_type_size(sig, comparison, sv.linfo.specTypes, sv.params.TUPLE_COMPLEXITY_LIMIT_DEPTH, spec_len)
if newsig !== sig
# continue inference, but note that we've limited parameter complexity
# on this call (to ensure convergence), so that we don't cache this result
if call_result_unused(sv)
# if we don't (typically) actually care about this result,
# don't bother trying to examine some complex abstract signature
# since it's very unlikely that we'll try to inline this,
# or want make an invoke edge to its calling convention return type.
# (non-typically, this means that we lose the ability to detect a guaranteed StackOverflow in some cases)
return Any, false, nothing
end
poison_callstack(sv, topmost::InferenceState, true)
sig = newsig
sparams = svec()
end
end
# if sig changed, may need to recompute the sparams environment
if isa(method.sig, UnionAll) && isempty(sparams)
recomputed = ccall(:jl_type_intersection_with_env, Any, (Any, Any), sig, method.sig)::SimpleVector
#@assert recomputed[1] !== Bottom
# We must not use `sig` here, since that may re-introduce structural complexity that
# our limiting heuristic sought to eliminate. The alternative would be to not increment depth over covariant contexts,
# but we prefer to permit inference of tuple-destructuring, so we don't do that right now
# For example, with a signature such as `Tuple{T, Ref{T}} where {T <: S}`
# we might want to limit this to `Tuple{S, Ref}`, while type-intersection can instead give us back the original type
# (which moves `S` back up to a lower comparison depth)
# Optionally, we could try to drive this to a fixed point, but I think this is getting too complex,
# and this would only cause more questions and more problems
# (the following is only an example, most of the statements are probable in the wrong order):
# newsig = sig
# seen = IdSet()
# while !(newsig in seen)
# push!(seen, newsig)
# lsig = length((unwrap_unionall(sig)::DataType).parameters)
# newsig = limit_type_size(newsig, sig, sv.linfo.specTypes, sv.params.TUPLE_COMPLEXITY_LIMIT_DEPTH, lsig)
# recomputed = ccall(:jl_type_intersection_with_env, Any, (Any, Any), newsig, method.sig)::SimpleVector
# newsig = recomputed[2]
# end
# sig = ?
sparams = recomputed[2]::SimpleVector
end
rt, edge = typeinf_edge(method, sig, sparams, sv)
if edge === nothing
edgecycle = true
end
return rt, edgecycle, edge
end
# This is only for use with `Conditional`.
# In general, usage of this is wrong.
function ssa_def_slot(@nospecialize(arg), sv::InferenceState)
init = sv.currpc
while isa(arg, SSAValue)
init = arg.id
arg = sv.src.code[init]
end
arg isa SlotNumber || return nothing
for i = init:(sv.currpc - 1)
# conservatively make sure there isn't potentially another conflicting assignment to
# the same slot between the def and usage
# we can assume the IR is sorted, since the front-end only creates SSA values in order
e = sv.src.code[i]
e isa Expr || continue
if e.head === :(=) && e.args[1] === arg
return nothing
end
end
return arg
end
# `typ` is the inferred type for expression `arg`.
# if the expression constructs a container (e.g. `svec(x,y,z)`),
# refine its type to an array of element types.
# Union of Tuples of the same length is converted to Tuple of Unions.
# returns an array of types
function precise_container_type(@nospecialize(typ), vtypes::VarTable, sv::InferenceState)
if isa(typ, PartialStruct) && typ.typ.name === Tuple.name
return typ.fields
end
if isa(typ, Const)
val = typ.val
if isa(val, SimpleVector) || isa(val, Tuple)
return Any[ Const(val[i]) for i in 1:length(val) ] # avoid making a tuple Generator here!
end
end
tti0 = widenconst(typ)
tti = unwrap_unionall(tti0)
if isa(tti, DataType) && tti.name === NamedTuple_typename
tti0 = tti.parameters[2]
while isa(tti0, TypeVar)
tti0 = tti0.ub
end
end
if isa(tti, Union)
utis = uniontypes(tti)
if _any(t -> !isa(t, DataType) || !(t <: Tuple) || !isknownlength(t), utis)
return Any[Vararg{Any}]
end
result = Any[rewrap_unionall(p, tti0) for p in utis[1].parameters]
for t in utis[2:end]
if length(t.parameters) != length(result)
return Any[Vararg{Any}]
end
for j in 1:length(t.parameters)
result[j] = tmerge(result[j], rewrap_unionall(t.parameters[j], tti0))
end
end
return result
elseif tti0 <: Tuple
if isa(tti0, DataType)
if isvatuple(tti0) && length(tti0.parameters) == 1
return Any[Vararg{unwrapva(tti0.parameters[1])}]
else
return Any[ p for p in tti0.parameters ]
end
elseif !isa(tti, DataType)
return Any[Vararg{Any}]
else
len = length(tti.parameters)
last = tti.parameters[len]
va = isvarargtype(last)
elts = Any[ fieldtype(tti0, i) for i = 1:len ]
if va
elts[len] = Vararg{elts[len]}
end
return elts
end
elseif tti0 === SimpleVector || tti0 === Any
return Any[Vararg{Any}]
elseif tti0 <: Array
return Any[Vararg{eltype(tti0)}]
else
return abstract_iteration(typ, vtypes, sv)
end
end
# simulate iteration protocol on container type up to fixpoint
function abstract_iteration(@nospecialize(itertype), vtypes::VarTable, sv::InferenceState)
if !isdefined(Main, :Base) || !isdefined(Main.Base, :iterate) || !isconst(Main.Base, :iterate)
return Any[Vararg{Any}]
end
iteratef = getfield(Main.Base, :iterate)
stateordonet = abstract_call(iteratef, nothing, Any[Const(iteratef), itertype], vtypes, sv)
# Return Bottom if this is not an iterator.
# WARNING: Changes to the iteration protocol must be reflected here,
# this is not just an optimization.
stateordonet === Bottom && return Any[Bottom]
valtype = statetype = Bottom
ret = Any[]
stateordonet = widenconst(stateordonet)
while !(Nothing <: stateordonet) && length(ret) < sv.params.MAX_TUPLE_SPLAT
if !isa(stateordonet, DataType) || !(stateordonet <: Tuple) || isvatuple(stateordonet) || length(stateordonet.parameters) != 2
break
end
if stateordonet.parameters[2] <: statetype
# infinite (or failing) iterator
return Any[Bottom]
end
valtype = stateordonet.parameters[1]
statetype = stateordonet.parameters[2]
push!(ret, valtype)
stateordonet = abstract_call(iteratef, nothing, Any[Const(iteratef), itertype, statetype], vtypes, sv)
stateordonet = widenconst(stateordonet)
end
if stateordonet === Nothing
return ret
end
while valtype !== Any
nounion = typesubtract(stateordonet, Nothing)
if !isa(nounion, DataType) || !(nounion <: Tuple) || isvatuple(nounion) || length(nounion.parameters) != 2
valtype = Any
break
end
if nounion.parameters[1] <: valtype && nounion.parameters[2] <: statetype
break
end
valtype = tmerge(valtype, nounion.parameters[1])
statetype = tmerge(statetype, nounion.parameters[2])
stateordonet = abstract_call(iteratef, nothing, Any[Const(iteratef), itertype, statetype], vtypes, sv)
stateordonet = widenconst(stateordonet)
end
push!(ret, Vararg{valtype})
return ret
end
# do apply(af, fargs...), where af is a function value
function abstract_apply(@nospecialize(aft), aargtypes::Vector{Any}, vtypes::VarTable, sv::InferenceState,
max_methods = sv.params.MAX_METHODS)
aftw = widenconst(aft)
if !isa(aft, Const) && (!isType(aftw) || has_free_typevars(aftw))
if !isconcretetype(aftw) || (aftw <: Builtin)
# non-constant function of unknown type: bail now,
# since it seems unlikely that abstract_call will be able to do any better after splitting
# this also ensures we don't call abstract_call_gf_by_type below on an IntrinsicFunction or Builtin
return Any
end
end
res = Union{}
nargs = length(aargtypes)
splitunions = 1 < countunionsplit(aargtypes) <= sv.params.MAX_APPLY_UNION_ENUM
ctypes = Any[Any[aft]]
for i = 1:nargs
ctypes´ = []
for ti in (splitunions ? uniontypes(aargtypes[i]) : Any[aargtypes[i]])
cti = precise_container_type(ti, vtypes, sv)
if _any(t -> t === Bottom, cti)
continue
end
for ct in ctypes
if isvarargtype(ct[end])
tail = tuple_tail_elem(unwrapva(ct[end]), cti)
push!(ctypes´, push!(ct[1:(end - 1)], tail))
else
push!(ctypes´, append_any(ct, cti))
end
end
end
ctypes = ctypes´
end
for ct in ctypes
if isa(aft, Const)
rt = abstract_call(aft.val, nothing, ct, vtypes, sv, max_methods)
elseif isconstType(aft)
rt = abstract_call(aft.parameters[1], nothing, ct, vtypes, sv, max_methods)
else
astype = argtypes_to_type(ct)
rt = abstract_call_gf_by_type(nothing, ct, astype, sv, max_methods)
end
res = tmerge(res, rt)
if res === Any
break
end
end
return res
end
function pure_eval_call(@nospecialize(f), argtypes::Vector{Any}, @nospecialize(atype), sv::InferenceState)
for i = 2:length(argtypes)
a = widenconditional(argtypes[i])
if !(isa(a, Const) || isconstType(a))
return false
end
end
min_valid = UInt[typemin(UInt)]
max_valid = UInt[typemax(UInt)]
meth = _methods_by_ftype(atype, 1, sv.params.world, min_valid, max_valid)
if meth === false || length(meth) != 1
return false
end
meth = meth[1]::SimpleVector
method = meth[3]::Method
# TODO: check pure on the inferred thunk
if isdefined(method, :generator) || !method.pure
return false
end
args = Any[ (a = widenconditional(argtypes[i]); isa(a, Const) ? a.val : a.parameters[1]) for i in 2:length(argtypes) ]
try
value = Core._apply_pure(f, args)
# TODO: add some sort of edge(s)
return Const(value, true)
catch
return false
end
end
function abstract_call(@nospecialize(f), fargs::Union{Nothing,Vector{Any}}, argtypes::Vector{Any}, vtypes::VarTable, sv::InferenceState, max_methods = sv.params.MAX_METHODS)
if f === _apply
return abstract_apply(argtypes[2], argtypes[3:end], vtypes, sv, max_methods)
end
la = length(argtypes)
for i = 2:(la - 1)
if isvarargtype(argtypes[i])
return Any
end
end
if isa(f, Builtin) || isa(f, IntrinsicFunction)
if f === ifelse && fargs isa Vector{Any} && length(argtypes) == 4 && argtypes[2] isa Conditional
# try to simulate this as a real conditional (`cnd ? x : y`), so that the penalty for using `ifelse` instead isn't too high
cnd = argtypes[2]::Conditional
tx = argtypes[3]
ty = argtypes[4]
a = ssa_def_slot(fargs[3], sv)
b = ssa_def_slot(fargs[4], sv)
if isa(a, Slot) && slot_id(cnd.var) == slot_id(a)
tx = typeintersect(tx, cnd.vtype)
end
if isa(b, Slot) && slot_id(cnd.var) == slot_id(b)
ty = typeintersect(ty, cnd.elsetype)
end
return tmerge(tx, ty)
end
rt = builtin_tfunction(f, argtypes[2:end], sv)
if f === getfield && isa(fargs, Vector{Any}) && length(argtypes) == 3 && isa(argtypes[3], Const) && isa(argtypes[3].val, Int) && argtypes[2] ⊑ Tuple
cti = precise_container_type(argtypes[2], vtypes, sv)
idx = argtypes[3].val
if 1 <= idx <= length(cti)
rt = unwrapva(cti[idx])
end
elseif (rt === Bool || (isa(rt, Const) && isa(rt.val, Bool))) && isa(fargs, Vector{Any})
# perform very limited back-propagation of type information for `is` and `isa`
if f === isa
a = ssa_def_slot(fargs[2], sv)
if isa(a, Slot)
aty = widenconst(argtypes[2])
if rt === Const(false)
return Conditional(a, Union{}, aty)
elseif rt === Const(true)
return Conditional(a, aty, Union{})
end
tty_ub, isexact_tty = instanceof_tfunc(argtypes[3])
if isexact_tty && !isa(tty_ub, TypeVar)
tty_lb = tty_ub # TODO: this would be wrong if !isexact_tty, but instanceof_tfunc doesn't preserve this info
if !has_free_typevars(tty_lb) && !has_free_typevars(tty_ub)
ifty = typeintersect(aty, tty_ub)
elty = typesubtract(aty, tty_lb)
return Conditional(a, ifty, elty)
end
end
end
elseif f === (===)
a = ssa_def_slot(fargs[2], sv)
b = ssa_def_slot(fargs[3], sv)
aty = argtypes[2]
bty = argtypes[3]
# if doing a comparison to a singleton, consider returning a `Conditional` instead
if isa(aty, Const) && isa(b, Slot)
if rt === Const(false)
aty = Union{}
elseif rt === Const(true)
bty = Union{}
elseif bty isa Type && isdefined(typeof(aty.val), :instance) # can only widen a if it is a singleton
bty = typesubtract(bty, typeof(aty.val))
end
return Conditional(b, aty, bty)
end
if isa(bty, Const) && isa(a, Slot)
if rt === Const(false)
bty = Union{}
elseif rt === Const(true)
aty = Union{}
elseif aty isa Type && isdefined(typeof(bty.val), :instance) # same for b
aty = typesubtract(aty, typeof(bty.val))
end
return Conditional(a, bty, aty)
end
if isa(b, Slot)
return Conditional(b, bty, bty)
end
if isa(a, Slot)
return Conditional(a, aty, aty)
end
elseif f === Core.Compiler.not_int
aty = argtypes[2]
if isa(aty, Conditional)
ifty = aty.elsetype
elty = aty.vtype
if rt === Const(false)
ifty = Union{}
elseif rt === Const(true)
elty = Union{}
end
return Conditional(aty.var, ifty, elty)
end
end
end
return isa(rt, TypeVar) ? rt.ub : rt
elseif f === Core.kwfunc
if length(argtypes) == 2
ft = widenconst(argtypes[2])
if isa(ft, DataType) && isdefined(ft.name, :mt) && isdefined(ft.name.mt, :kwsorter)
return Const(ft.name.mt.kwsorter)
end
end
return Any
elseif f === TypeVar
# Manually look through the definition of TypeVar to
# make sure to be able to get `PartialTypeVar`s out.
(length(argtypes) < 2 || length(argtypes) > 4) && return Union{}
n = argtypes[2]
ub_var = Const(Any)
lb_var = Const(Union{})
if length(argtypes) == 4
ub_var = argtypes[4]
lb_var = argtypes[3]
elseif length(argtypes) == 3
ub_var = argtypes[3]
end
return typevar_tfunc(n, lb_var, ub_var)
elseif f === UnionAll
if length(argtypes) == 3
canconst = true
if isa(argtypes[3], Const)
body = argtypes[3].val
elseif isType(argtypes[3])
body = argtypes[3].parameters[1]
canconst = false
else
return Any
end
if !isa(body, Type) && !isa(body, TypeVar)
return Any
end
if has_free_typevars(body)
if isa(argtypes[2], Const)
tv = argtypes[2].val
elseif isa(argtypes[2], PartialTypeVar)
ptv = argtypes[2]
tv = ptv.tv
canconst = false
else
return Any
end
!isa(tv, TypeVar) && return Any
body = UnionAll(tv, body)
end
ret = canconst ? AbstractEvalConstant(body) : Type{body}
return ret
end
return Any
elseif is_return_type(f)
rt_rt = return_type_tfunc(argtypes, vtypes, sv)
if rt_rt !== nothing
return rt_rt
end
elseif length(argtypes) == 2 && istopfunction(f, :!)
# handle Conditional propagation through !Bool
aty = argtypes[2]
if isa(aty, Conditional)
abstract_call_gf_by_type(f, Any[Const(f), Bool], Tuple{typeof(f), Bool}, sv) # make sure we've inferred `!(::Bool)`
return Conditional(aty.var, aty.elsetype, aty.vtype)
end
elseif length(argtypes) == 3 && istopfunction(f, :!==)
# mark !== as exactly a negated call to ===
rty = abstract_call((===), fargs, argtypes, vtypes, sv)
if isa(rty, Conditional)
return Conditional(rty.var, rty.elsetype, rty.vtype) # swap if-else
elseif isa(rty, Const)
return Const(rty.val === false)
end
return rty
elseif length(argtypes) == 3 && istopfunction(f, :(>:))
# mark issupertype as a exact alias for issubtype
# swap T1 and T2 arguments and call <:
if length(fargs) == 3
fargs = Any[<:, fargs[3], fargs[2]]
else
fargs = nothing
end
argtypes = Any[typeof(<:), argtypes[3], argtypes[2]]
rty = abstract_call(<:, fargs, argtypes, vtypes, sv)
return rty
elseif length(argtypes) == 2 && isa(argtypes[2], Const) && isa(argtypes[2].val, SimpleVector) && istopfunction(f, :length)
# mark length(::SimpleVector) as @pure
return Const(length(argtypes[2].val))
elseif length(argtypes) == 3 && isa(argtypes[2], Const) && isa(argtypes[3], Const) &&
isa(argtypes[2].val, SimpleVector) && isa(argtypes[3].val, Int) && istopfunction(f, :getindex)
# mark getindex(::SimpleVector, i::Int) as @pure
svecval = argtypes[2].val::SimpleVector
idx = argtypes[3].val::Int
if 1 <= idx <= length(svecval) && isassigned(svecval, idx)
return Const(getindex(svecval, idx))
end
elseif length(argtypes) == 2 && istopfunction(f, :typename)
return typename_static(argtypes[2])
end
atype = argtypes_to_type(argtypes)
t = pure_eval_call(f, argtypes, atype, sv)
t !== false && return t
if istopfunction(f, :typejoin) || is_return_type(f)
return Type # don't try to infer these function edges directly -- it won't actually come up with anything useful
end
return abstract_call_gf_by_type(f, argtypes, atype, sv, max_methods)
end
# wrapper around `abstract_call` for first computing if `f` is available
function abstract_eval_call(fargs::Union{Nothing,Vector{Any}}, argtypes::Vector{Any}, vtypes::VarTable, sv::InferenceState)
#print("call ", e.args[1], argtypes, "\n\n")
for x in argtypes
x === Bottom && return Bottom
end
ft = argtypes[1]
if isa(ft, Const)
f = ft.val
elseif isconstType(ft)
f = ft.parameters[1]
elseif isa(ft, DataType) && isdefined(ft, :instance)
f = ft.instance
else
for i = 2:(length(argtypes) - 1)
if isvarargtype(argtypes[i])
return Any
end
end
# non-constant function, but the number of arguments is known
# and the ft is not a Builtin or IntrinsicFunction
if typeintersect(widenconst(ft), Builtin) != Union{}
return Any
end
return abstract_call_gf_by_type(nothing, argtypes, argtypes_to_type(argtypes), sv)
end
return abstract_call(f, fargs, argtypes, vtypes, sv)
end
function sp_type_rewrap(@nospecialize(T), linfo::MethodInstance, isreturn::Bool)
isref = false
if T === Bottom
return Bottom
elseif isa(T, Type)
if isa(T, DataType) && (T::DataType).name === _REF_NAME
isref = true
T = T.parameters[1]
if isreturn && T === Any
return Bottom # a return type of Ref{Any} is invalid
end
end
else
return Any
end
if isa(linfo.def, Method)
spsig = linfo.def.sig
if isa(spsig, UnionAll)
if !isempty(linfo.sparam_vals)
env = pointer_from_objref(linfo.sparam_vals) + sizeof(Ptr{Cvoid})
T = ccall(:jl_instantiate_type_in_env, Any, (Any, Any, Ptr{Any}), T, spsig, env)
isref && isreturn && T === Any && return Bottom # catch invalid return Ref{T} where T = Any
for v in linfo.sparam_vals
if isa(v, TypeVar)
T = UnionAll(v, T)
end
end
else
T = rewrap_unionall(T, spsig)
end
end
end
while isa(T, TypeVar)
T = T.ub
end
return T
end
function abstract_eval_cfunction(e::Expr, vtypes::VarTable, sv::InferenceState)
f = abstract_eval(e.args[2], vtypes, sv)
# rt = sp_type_rewrap(e.args[3], sv.linfo, true)
at = Any[ sp_type_rewrap(argt, sv.linfo, false) for argt in e.args[4]::SimpleVector ]
pushfirst!(at, f)
# this may be the wrong world for the call,
# but some of the result is likely to be valid anyways
# and that may help generate better codegen
abstract_eval_call(nothing, at, vtypes, sv)
nothing
end
function abstract_eval(@nospecialize(e), vtypes::VarTable, sv::InferenceState)
if isa(e, QuoteNode)
return AbstractEvalConstant((e::QuoteNode).value)
elseif isa(e, SSAValue)
return abstract_eval_ssavalue(e::SSAValue, sv.src)
elseif isa(e, Slot)
return vtypes[slot_id(e)].typ
elseif isa(e, GlobalRef)
return abstract_eval_global(e.mod, e.name)
end
if !isa(e, Expr)
return AbstractEvalConstant(e)
end
e = e::Expr
if e.head === :call
argtypes = Any[ abstract_eval(a, vtypes, sv) for a in e.args ]
t = abstract_eval_call(e.args, argtypes, vtypes, sv)
elseif e.head === :new
t = instanceof_tfunc(abstract_eval(e.args[1], vtypes, sv))[1]
if isconcretetype(t) && !t.mutable
args = Vector{Any}(undef, length(e.args)-1)
ats = Vector{Any}(undef, length(e.args)-1)
anyconst = false
allconst = true
for i = 2:length(e.args)
at = abstract_eval(e.args[i], vtypes, sv)
if !anyconst
anyconst = has_nontrivial_const_info(at)
end
ats[i-1] = at
if at === Bottom
t = Bottom
allconst = anyconst = false
break
elseif at isa Const
if !(at.val isa fieldtype(t, i - 1))
t = Bottom
allconst = anyconst = false
break
end
args[i-1] = at.val
else
allconst = false
end
end
# For now, don't allow partially initialized Const/PartialStruct
if t !== Bottom && fieldcount(t) == length(ats)
if allconst
t = Const(ccall(:jl_new_structv, Any, (Any, Ptr{Cvoid}, UInt32), t, args, length(args)))
elseif anyconst
t = PartialStruct(t, ats)
end
end
end
elseif e.head === :splatnew
t = instanceof_tfunc(abstract_eval(e.args[1], vtypes, sv))[1]
# TODO: improve
elseif e.head === :&
abstract_eval(e.args[1], vtypes, sv)
t = Any
elseif e.head === :foreigncall
abstract_eval(e.args[1], vtypes, sv)
t = sp_type_rewrap(e.args[2], sv.linfo, true)
for i = 3:length(e.args)
if abstract_eval(e.args[i], vtypes, sv) === Bottom
t = Bottom
end
end
elseif e.head === :cfunction
t = e.args[1]
isa(t, Type) || (t = Any)
abstract_eval_cfunction(e, vtypes, sv)
elseif e.head === :static_parameter
n = e.args[1]
t = Any
if 1 <= n <= length(sv.sptypes)
t = sv.sptypes[n]
end
elseif e.head === :method
t = (length(e.args) == 1) ? Any : Nothing
elseif e.head === :copyast
t = abstract_eval(e.args[1], vtypes, sv)
if t isa Const && t.val isa Expr
# `copyast` makes copies of Exprs
t = Expr
end
elseif e.head === :invoke
error("type inference data-flow error: tried to double infer a function")
elseif e.head === :boundscheck
return Bool
elseif e.head === :isdefined
sym = e.args[1]
t = Bool
if isa(sym, Slot)
vtyp = vtypes[slot_id(sym)]
if vtyp.typ === Bottom
t = Const(false) # never assigned previously
elseif !vtyp.undef
t = Const(true) # definitely assigned previously
end
elseif isa(sym, Symbol)
if isdefined(sv.mod, sym.name)
t = Const(true)
end
elseif isa(sym, GlobalRef)
if isdefined(sym.mod, sym.name)
t = Const(true)
end
elseif isa(sym, Expr) && sym.head === :static_parameter
n = sym.args[1]
if 1 <= n <= length(sv.sptypes)
spty = sv.sptypes[n]
if isa(spty, Const)
t = Const(true)
end
end