@@ -135,7 +135,7 @@ QRPivoted(factors::AbstractMatrix{T}, τ::Vector{T}, jpvt::Vector{BlasInt}) wher
135135
136136function qrfactUnblocked! (A:: AbstractMatrix{T} ) where {T}
137137 m, n = size (A)
138- τ = zeros (T , min (m,n))
138+ τ = fill ( zero (T) , min (m,n))
139139 for k = 1 : min (m - 1 + ! (T<: Real ), n)
140140 x = view (A, k: m, k)
141141 τk = reflector! (x)
@@ -460,7 +460,7 @@ function getproperty(F::QRPivoted{T}, d::Symbol) where T
460460 elseif d == :P
461461 p = F. p
462462 n = length (p)
463- P = zeros (T , n, n)
463+ P = fill ( zero (T) , n, n)
464464 for i in 1 : n
465465 P[p[i],i] = one (T)
466466 end
@@ -514,9 +514,9 @@ size(A::AbstractQ) = size(A, 1), size(A, 2)
514514
515515
516516function getindex (A:: AbstractQ , i:: Integer , j:: Integer )
517- x = zeros ( eltype (A), size (A, 1 ))
517+ x = fill ( zero ( eltype (A) ), size (A, 1 ))
518518 x[i] = 1
519- y = zeros ( eltype (A), size (A, 2 ))
519+ y = fill ( zero ( eltype (A) ), size (A, 2 ))
520520 y[j] = 1
521521 return dot (x, mul! (A, y))
522522end
@@ -558,7 +558,7 @@ function (*)(A::AbstractQ, b::StridedVector)
558558 if size (A. factors, 1 ) == length (b)
559559 bnew = copy_oftype (b, TAb)
560560 elseif size (A. factors, 2 ) == length (b)
561- bnew = [b; zeros ( TAb, size (A. factors, 1 ) - length (b))]
561+ bnew = [b; fill ( zero ( TAb) , size (A. factors, 1 ) - length (b))]
562562 else
563563 throw (DimensionMismatch (" vector must have length either $(size (A. factors, 1 )) or $(size (A. factors, 2 )) " ))
564564 end
@@ -570,7 +570,7 @@ function (*)(A::AbstractQ, B::StridedMatrix)
570570 if size (A. factors, 1 ) == size (B, 1 )
571571 Bnew = copy_oftype (B, TAB)
572572 elseif size (A. factors, 2 ) == size (B, 1 )
573- Bnew = [B; zeros ( TAB, size (A. factors, 1 ) - size (B,1 ), size (B, 2 ))]
573+ Bnew = [B; fill ( zero ( TAB) , size (A. factors, 1 ) - size (B,1 ), size (B, 2 ))]
574574 else
575575 throw (DimensionMismatch (" first dimension of matrix must have size either $(size (A. factors, 1 )) or $(size (A. factors, 2 )) " ))
576576 end
@@ -711,7 +711,7 @@ function *(A::StridedMatrix, adjB::Adjoint{<:Any,<:AbstractQ})
711711 copyto! (AA, A)
712712 return mul! (AA, adjoint (BB))
713713 elseif size (A,2 ) == size (B. factors,2 )
714- return mul! ([A zeros ( TAB, size (A, 1 ), size (B. factors, 1 ) - size (B. factors, 2 ))], adjoint (BB))
714+ return mul! ([A fill ( zero ( TAB) , size (A, 1 ), size (B. factors, 1 ) - size (B. factors, 2 ))], adjoint (BB))
715715 else
716716 throw (DimensionMismatch (" matrix A has dimensions $(size (A)) but matrix B has dimensions $(size (B)) " ))
717717 end
@@ -788,7 +788,7 @@ function ldiv!(A::QR{T}, B::StridedMatrix{T}) where T
788788 R = A. R
789789 @inbounds begin
790790 if n > m # minimum norm solution
791- τ = zeros (T ,m)
791+ τ = fill ( zero (T) ,m)
792792 for k = m: - 1 : 1 # Trapezoid to triangular by elementary operation
793793 x = view (R, k, [k; m + 1 : n])
794794 τk = reflector! (x)
@@ -845,8 +845,8 @@ _cut_B(x::AbstractVector, r::UnitRange) = length(x) > length(r) ? x[r] : x
845845_cut_B (X:: AbstractMatrix , r:: UnitRange ) = size (X, 1 ) > length (r) ? X[r,:] : X
846846
847847# # append right hand side with zeros if necessary
848- _zeros (:: Type{T} , b:: AbstractVector , n:: Integer ) where {T} = zeros (T , max (length (b), n))
849- _zeros (:: Type{T} , B:: AbstractMatrix , n:: Integer ) where {T} = zeros (T , max (size (B, 1 ), n), size (B, 2 ))
848+ _zeros (:: Type{T} , b:: AbstractVector , n:: Integer ) where {T} = fill ( zero (T) , max (length (b), n))
849+ _zeros (:: Type{T} , B:: AbstractMatrix , n:: Integer ) where {T} = fill ( zero (T) , max (size (B, 1 ), n), size (B, 2 ))
850850
851851function (\ )(A:: Union{QR{TA},QRCompactWY{TA},QRPivoted{TA}} , B:: AbstractVecOrMat{TB} ) where {TA,TB}
852852 S = promote_type (TA,TB)
0 commit comments