-
-
Notifications
You must be signed in to change notification settings - Fork 358
/
Copy pathutils.jl
1233 lines (1050 loc) · 38.8 KB
/
utils.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# ---------------------------------------------------------------
treats_y_as_x(seriestype) =
seriestype in (:vline, :vspan, :histogram, :barhist, :stephist, :scatterhist)
function replace_image_with_heatmap(z::AbstractMatrix{<:Colorant})
n, m = size(z)
colors = palette(vec(z))
reshape(1:(n * m), n, m), colors
end
# ---------------------------------------------------------------
"Build line segments for plotting"
mutable struct Segments{T}
pts::Vector{T}
end
# Segments() = Segments{Float64}(zeros(0))
Segments() = Segments(Float64)
Segments(::Type{T}) where {T} = Segments(T[])
Segments(p::Int) = Segments(NTuple{p,Float64}[])
# Segments() = Segments(zeros(0))
to_nan(::Type{Float64}) = NaN
to_nan(::Type{NTuple{2,Float64}}) = (NaN, NaN)
to_nan(::Type{NTuple{3,Float64}}) = (NaN, NaN, NaN)
coords(segs::Segments{Float64}) = segs.pts
coords(segs::Segments{NTuple{2,Float64}}) =
(map(p -> p[1], segs.pts), map(p -> p[2], segs.pts))
coords(segs::Segments{NTuple{3,Float64}}) =
(map(p -> p[1], segs.pts), map(p -> p[2], segs.pts), map(p -> p[3], segs.pts))
function Base.push!(segments::Segments{T}, vs...) where {T}
isempty(segments.pts) || push!(segments.pts, to_nan(T))
foreach(v -> push!(segments.pts, convert(T, v)), vs)
segments
end
function Base.push!(segments::Segments{T}, vs::AVec) where {T}
isempty(segments.pts) || push!(segments.pts, to_nan(T))
foreach(v -> push!(segments.pts, convert(T, v)), vs)
segments
end
struct SeriesSegment
# indexes of this segment in series data vectors
range::UnitRange
# index into vector-valued attributes corresponding to this segment
attr_index::Int
end
# -----------------------------------------------------
# helper to manage NaN-separated segments
struct NaNSegmentsIterator
args::Tuple
n1::Int
n2::Int
end
function iter_segments(args...)
tup = Plots.wraptuple(args)
n1 = minimum(map(firstindex, tup))
n2 = maximum(map(lastindex, tup))
NaNSegmentsIterator(tup, n1, n2)
end
"floor number x in base b, note this is different from using Base.round(...; base=b) !"
floor_base(x, b) = round_base(x, b, RoundDown)
"ceil number x in base b"
ceil_base(x, b) = round_base(x, b, RoundUp)
round_base(x::T, b, ::RoundingMode{:Down}) where {T} = T(b^floor(log(b, x)))
round_base(x::T, b, ::RoundingMode{:Up}) where {T} = T(b^ceil(log(b, x)))
ignorenan_min_max(::Any, ex) = ex
function ignorenan_min_max(x::AbstractArray{<:AbstractFloat}, ex::Tuple)
mn, mx = ignorenan_extrema(x)
NaNMath.min(ex[1], mn), NaNMath.max(ex[2], mx)
end
function series_segments(series::Series, seriestype::Symbol = :path; check = false)
x, y, z = series[:x], series[:y], series[:z]
(x === nothing || isempty(x)) && return UnitRange{Int}[]
args = RecipesPipeline.is3d(series) ? (x, y, z) : (x, y)
nan_segments = collect(iter_segments(args...))
if check
scales = :xscale, :yscale, :zscale
for (n, s) in enumerate(args)
(scale = get(series, scales[n], :identity)) ∈ _logScales || continue
for (i, v) in enumerate(s)
if v <= 0
@warn "Invalid negative or zero value $v found at series index $i for $scale based $(scales[n])"
@debug "" exception = (DomainError(v), stacktrace())
break
end
end
end
end
segments = if has_attribute_segments(series)
map(nan_segments) do r
if seriestype === :shape
warn_on_inconsistent_shape_attr(series, x, y, z, r)
(SeriesSegment(r, first(r)),)
elseif seriestype in (:scatter, :scatter3d)
(SeriesSegment(i:i, i) for i in r)
else
(SeriesSegment(i:(i + 1), i) for i in first(r):(last(r) - 1))
end
end |> Iterators.flatten
else
(SeriesSegment(r, 1) for r in nan_segments)
end
warn_on_attr_dim_mismatch(series, x, y, z, segments)
segments
end
function warn_on_attr_dim_mismatch(series, x, y, z, segments)
isempty(segments) && return
seg_range = UnitRange(
minimum(map(seg -> first(seg.range), segments)),
maximum(map(seg -> last(seg.range), segments)),
)
for attr in _segmenting_vector_attributes
if (v = get(series, attr, nothing)) isa AVec && eachindex(v) != seg_range
@warn "Indices $(eachindex(v)) of attribute `$attr` does not match data indices $seg_range."
if any(v -> !isnothing(v) && any(isnan, v), (x, y, z))
@info """Data contains NaNs or missing values, and indices of `$attr` vector do not match data indices.
If you intend elements of `$attr` to apply to individual NaN-separated segments in the data,
pass each segment in a separate vector instead, and use a row vector for `$attr`. Legend entries
may be suppressed by passing an empty label.
For example,
plot([1:2,1:3], [[4,5],[3,4,5]], label=["y" ""], $attr=[1 2])
"""
end
end
end
end
function warn_on_inconsistent_shape_attr(series, x, y, z, r)
for attr in _segmenting_vector_attributes
v = get(series, attr, nothing)
if v isa AVec && length(unique(v[r])) > 1
@warn "Different values of `$attr` specified for different shape vertices. Only first one will be used."
break
end
end
end
# helpers to figure out if there are NaN values in a list of array types
anynan(i::Int, args::Tuple) = any(a -> try
isnan(_cycle(a, i))
catch MethodError
false
end, args)
anynan(args::Tuple) = i -> anynan(i, args)
anynan(istart::Int, iend::Int, args::Tuple) = any(anynan(args), istart:iend)
allnan(istart::Int, iend::Int, args::Tuple) = all(anynan(args), istart:iend)
function Base.iterate(itr::NaNSegmentsIterator, nextidx::Int = itr.n1)
(i = findfirst(!anynan(itr.args), nextidx:(itr.n2))) === nothing && return
nextval = nextidx + i - 1
j = findfirst(anynan(itr.args), nextval:(itr.n2))
nextnan = j === nothing ? itr.n2 + 1 : nextval + j - 1
nextval:(nextnan - 1), nextnan
end
Base.IteratorSize(::NaNSegmentsIterator) = Base.SizeUnknown() # COV_EXCL_LINE
# Find minimal type that can contain NaN and x
# To allow use of NaN separated segments with categorical x axis
float_extended_type(x::AbstractArray{T}) where {T} = Union{T,Float64}
float_extended_type(x::AbstractArray{Real}) = Float64
# ------------------------------------------------------------------------------------
_cycle(wrapper::InputWrapper, idx::Int) = wrapper.obj
_cycle(wrapper::InputWrapper, idx::AVec{Int}) = wrapper.obj
_cycle(v::AVec, idx::Int) = v[mod(idx, axes(v, 1))]
_cycle(v::AMat, idx::Int) = size(v, 1) == 1 ? v[end, mod(idx, axes(v, 2))] : v[:, mod(idx, axes(v, 2))]
_cycle(v, idx::Int) = v
_cycle(v::AVec, indices::AVec{Int}) = map(i -> _cycle(v, i), indices)
_cycle(v::AMat, indices::AVec{Int}) = map(i -> _cycle(v, i), indices)
_cycle(v, indices::AVec{Int}) = fill(v, length(indices))
_cycle(cl::PlotUtils.AbstractColorList, idx::Int) = cl[mod1(idx, end)]
_cycle(cl::PlotUtils.AbstractColorList, idx::AVec{Int}) = cl[mod1.(idx, end)]
_as_gradient(grad) = grad
_as_gradient(v::AbstractVector{<:Colorant}) = cgrad(v)
_as_gradient(cp::ColorPalette) = cgrad(cp, categorical = true)
_as_gradient(c::Colorant) = cgrad([c, c])
makevec(v::AVec) = v
makevec(v::T) where {T} = T[v]
"duplicate a single value, or pass the 2-tuple through"
maketuple(x::Real) = (x, x)
maketuple(x::Tuple) = x
RecipesPipeline.unzip(v) = unzip(v) # COV_EXCL_LINE
replaceAlias!(plotattributes::AKW, k::Symbol, aliases::Dict{Symbol,Symbol}) =
if haskey(aliases, k)
plotattributes[aliases[k]] = RecipesPipeline.pop_kw!(plotattributes, k)
end
replaceAliases!(plotattributes::AKW, aliases::Dict{Symbol,Symbol}) =
foreach(k -> replaceAlias!(plotattributes, k, aliases), collect(keys(plotattributes)))
scale_inverse_scale_func(scale::Symbol) = (
RecipesPipeline.scale_func(scale),
RecipesPipeline.inverse_scale_func(scale),
scale === :identity,
)
function __heatmap_edges(v::AVec, isedges::Bool, ispolar::Bool)
(n = length(v)) == 1 && return v[1] .+ [ispolar ? max(-v[1], -0.5) : -0.5, 0.5]
isedges && return v
# `isedges = true` means that v is a vector which already describes edges
# and does not need to be extended.
vmin, vmax = ignorenan_extrema(v)
extra_min = ispolar ? min(v[1], 0.5(v[2] - v[1])) : 0.5(v[2] - v[1])
extra_max = 0.5(v[n] - v[n - 1])
vcat(vmin - extra_min, 0.5(v[1:(n - 1)] + v[2:n]), vmax + extra_max)
end
_heatmap_edges(::Val{true}, v::AVec, ::Symbol, isedges::Bool, ispolar::Bool) =
__heatmap_edges(v, isedges, ispolar)
function _heatmap_edges(::Val{false}, v::AVec, scale::Symbol, isedges::Bool, ispolar::Bool)
f, invf = scale_inverse_scale_func(scale)
invf.(__heatmap_edges(f.(v), isedges, ispolar))
end
"create an (n+1) list of the outsides of heatmap rectangles"
heatmap_edges(
v::AVec,
scale::Symbol = :identity,
isedges::Bool = false,
ispolar::Bool = false,
) = _heatmap_edges(Val(scale === :identity), v, scale, isedges, ispolar)
function heatmap_edges(
x::AVec,
xscale::Symbol,
y::AVec,
yscale::Symbol,
z_size::NTuple{2,Int},
ispolar::Bool = false,
)
nx, ny = length(x), length(y)
# ismidpoints = z_size == (ny, nx) # This fails some tests, but would actually be
# the correct check, since (4, 3) != (3, 4) and a missleading plot is produced.
ismidpoints = prod(z_size) == (ny * nx)
isedges = z_size == (ny - 1, nx - 1)
(ismidpoints || isedges) ||
"""
Length of x & y does not match the size of z.
Must be either `size(z) == (length(y), length(x))` (x & y define midpoints)
or `size(z) == (length(y)+1, length(x)+1))` (x & y define edges).
""" |>
ArgumentError |>
throw
(
_heatmap_edges(Val(xscale === :identity), x, xscale, isedges, false),
_heatmap_edges(Val(yscale === :identity), y, yscale, isedges, ispolar), # special handle for `r` in polar plots
)
end
is_uniformly_spaced(v; tol = 1e-6) =
let dv = diff(v)
maximum(dv) - minimum(dv) < tol * mean(abs.(dv))
end
function convert_to_polar(theta, r, r_extrema = ignorenan_extrema(r))
rmin, rmax = r_extrema
r = @. (r - rmin) / (rmax - rmin)
x = @. r * cos(theta)
y = @. r * sin(theta)
x, y
end
fakedata(sz::Int...) = fakedata(Random.seed!(PLOTS_SEED), sz...)
function fakedata(rng::AbstractRNG, sz...)
y = zeros(sz...)
for r in 2:size(y, 1)
y[r, :] = 0.95vec(y[r - 1, :]) + randn(rng, size(y, 2))
end
y
end
isijulia() = :IJulia in nameof.(collect(values(Base.loaded_modules)))
isatom() = :Atom in nameof.(collect(values(Base.loaded_modules)))
istuple(::Tuple) = true
istuple(::Any) = false
isvector(::AVec) = true
isvector(::Any) = false
ismatrix(::AMat) = true
ismatrix(::Any) = false
isscalar(::Real) = true
isscalar(::Any) = false
is_2tuple(v) = typeof(v) <: Tuple && length(v) == 2
isvertical(plotattributes::AKW) =
get(plotattributes, :orientation, :vertical) in (:vertical, :v, :vert)
isvertical(series::Series) = isvertical(series.plotattributes)
ticksType(ticks::AVec{<:Real}) = :ticks
ticksType(ticks::AVec{<:AbstractString}) = :labels
ticksType(ticks::Tuple{<:Union{AVec,Tuple},<:Union{AVec,Tuple}}) = :ticks_and_labels
ticksType(ticks) = :invalid
limsType(lims::Tuple{<:Real,<:Real}) = :limits
limsType(lims::Symbol) = lims === :auto ? :auto : :invalid
limsType(lims) = :invalid
isautop(sp::Subplot) = sp[:projection_type] === :auto
isortho(sp::Subplot) = sp[:projection_type] ∈ (:ortho, :orthographic)
ispersp(sp::Subplot) = sp[:projection_type] ∈ (:persp, :perspective)
# recursively merge kw-dicts, e.g. for merging extra_kwargs / extra_plot_kwargs in plotly)
recursive_merge(x::AbstractDict...) = merge(recursive_merge, x...)
# if values are not AbstractDicts, take the last definition (as does merge)
recursive_merge(x...) = x[end]
nanpush!(a::AbstractVector, b) = (push!(a, NaN); push!(a, b); nothing)
nanappend!(a::AbstractVector, b) = (push!(a, NaN); append!(a, b); nothing)
function nansplit(v::AVec)
vs = Vector{eltype(v)}[]
while true
if (idx = findfirst(isnan, v)) === nothing
# no nans
push!(vs, v)
break
elseif idx > 1
push!(vs, v[1:(idx - 1)])
end
v = v[(idx + 1):end]
end
vs
end
function nanvcat(vs::AVec)
v_out = zeros(0)
foreach(v -> nanappend!(v_out, v), vs)
v_out
end
sort_3d_axes(x, y, z, letter) =
if letter === :x
x, y, z
elseif letter === :y
y, x, z
else
z, y, x
end
axes_letters(sp, letter) =
if RecipesPipeline.is3d(sp)
sort_3d_axes(:x, :y, :z, letter)
else
letter === :x ? (:x, :y) : (:y, :x)
end
handle_surface(z) = z
handle_surface(z::Surface) = permutedims(z.surf)
ok(x::Number, y::Number, z::Number = 0) = isfinite(x) && isfinite(y) && isfinite(z)
ok(tup::Tuple) = ok(tup...)
# compute one side of a fill range from a ribbon
function make_fillrange_side(y::AVec, rib)
frs = zeros(axes(y))
for (i, yi) in pairs(y)
frs[i] = yi + _cycle(rib, i)
end
frs
end
# turn a ribbon into a fillrange
function make_fillrange_from_ribbon(kw::AKW)
y, rib = kw[:y], kw[:ribbon]
rib = wraptuple(rib)
rib1, rib2 = -first(rib), last(rib)
# kw[:ribbon] = nothing
kw[:fillrange] = make_fillrange_side(y, rib1), make_fillrange_side(y, rib2)
(get(kw, :fillalpha, nothing) === nothing) && (kw[:fillalpha] = 0.5)
end
#turn tuple of fillranges to one path
function concatenate_fillrange(x, y::Tuple)
rib1, rib2 = collect(first(y)), collect(last(y)) # collect needed until https://github.com/JuliaLang/julia/pull/37629 is merged
vcat(x, reverse(x)), vcat(rib1, reverse(rib2)) # x, y
end
get_sp_lims(sp::Subplot, letter::Symbol) = axis_limits(sp, letter)
"""
xlims([plt])
Returns the x axis limits of the current plot or subplot
"""
xlims(sp::Subplot) = get_sp_lims(sp, :x)
"""
ylims([plt])
Returns the y axis limits of the current plot or subplot
"""
ylims(sp::Subplot) = get_sp_lims(sp, :y)
"""
zlims([plt])
Returns the z axis limits of the current plot or subplot
"""
zlims(sp::Subplot) = get_sp_lims(sp, :z)
xlims(plt::Plot, sp_idx::Int = 1) = xlims(plt[sp_idx])
ylims(plt::Plot, sp_idx::Int = 1) = ylims(plt[sp_idx])
zlims(plt::Plot, sp_idx::Int = 1) = zlims(plt[sp_idx])
xlims(sp_idx::Int = 1) = xlims(current(), sp_idx)
ylims(sp_idx::Int = 1) = ylims(current(), sp_idx)
zlims(sp_idx::Int = 1) = zlims(current(), sp_idx)
iscontour(series::Series) = series[:seriestype] in (:contour, :contour3d)
isfilledcontour(series::Series) = iscontour(series) && series[:fillrange] !== nothing
function contour_levels(series::Series, clims)
iscontour(series) || error("Not a contour series")
zmin, zmax = clims
levels = series[:levels]
if levels isa Integer
levels = range(zmin, stop = zmax, length = levels + 2)
isfilledcontour(series) || (levels = levels[2:(end - 1)])
end
levels
end
for comp in (:line, :fill, :marker)
compcolor = string(comp, :color)
get_compcolor = Symbol(:get_, compcolor)
comp_z = string(comp, :_z)
compalpha = string(comp, :alpha)
get_compalpha = Symbol(:get_, compalpha)
@eval begin
# defines `get_linecolor`, `get_fillcolor` and `get_markercolor` <- for grep
function $get_compcolor(
series,
cmin::Real,
cmax::Real,
i::Integer = 1,
s::Symbol = :identity,
)
c = series[$Symbol($compcolor)] # series[:linecolor], series[:fillcolor], series[:markercolor]
z = series[$Symbol($comp_z)] # series[:line_z], series[:fill_z], series[:marker_z]
if z === nothing
isa(c, ColorGradient) ? c : plot_color(_cycle(c, i))
else
grad = get_gradient(c)
if s === :identity
get(grad, z[i], (cmin, cmax))
else
base = _logScaleBases[s]
get(grad, log(base, z[i]), (log(base, cmin), log(base, cmax)))
end
end
end
function $get_compcolor(series, i::Integer = 1, s::Symbol = :identity)
if series[$Symbol($comp_z)] === nothing
$get_compcolor(series, 0, 1, i, s)
else
$get_compcolor(series, get_clims(series[:subplot]), i, s)
end
end
$get_compcolor(series, clims::NTuple{2,<:Number}, args...) =
$get_compcolor(series, clims[1], clims[2], args...)
$get_compalpha(series, i::Integer = 1) = _cycle(series[$Symbol($compalpha)], i)
end
end
function get_colorgradient(series::Series)
if (st = series[:seriestype]) in (:surface, :heatmap) || isfilledcontour(series)
series[:fillcolor]
elseif st in (:contour, :wireframe)
series[:linecolor]
elseif series[:marker_z] !== nothing
series[:markercolor]
elseif series[:line_z] !== nothing
series[:linecolor]
elseif series[:fill_z] !== nothing
series[:fillcolor]
end
end
single_color(c, v = 0.5) = c
single_color(grad::ColorGradient, v = 0.5) = grad[v]
get_gradient(c) = cgrad()
get_gradient(cg::ColorGradient) = cg
get_gradient(cp::ColorPalette) = cgrad(cp, categorical = true)
get_linewidth(series, i::Integer = 1) = _cycle(series[:linewidth], i)
get_linestyle(series, i::Integer = 1) = _cycle(series[:linestyle], i)
get_fillstyle(series, i::Integer = 1) = _cycle(series[:fillstyle], i)
get_markerstrokecolor(series, i::Integer = 1) =
let msc = series[:markerstrokecolor]
msc isa ColorGradient ? msc : _cycle(msc, i)
end
get_markerstrokealpha(series, i::Integer = 1) = _cycle(series[:markerstrokealpha], i)
get_markerstrokewidth(series, i::Integer = 1) = _cycle(series[:markerstrokewidth], i)
const _segmenting_vector_attributes = (
:seriescolor,
:seriesalpha,
:linecolor,
:linealpha,
:linewidth,
:linestyle,
:fillcolor,
:fillalpha,
:fillstyle,
:markercolor,
:markeralpha,
:markersize,
:markerstrokecolor,
:markerstrokealpha,
:markerstrokewidth,
:markershape,
)
const _segmenting_array_attributes = :line_z, :fill_z, :marker_z
# we want to check if a series needs to be split into segments just because
# of its attributes
# check relevant attributes if they have multiple inputs
has_attribute_segments(series::Series) =
any(
series[attr] isa AbstractVector && length(series[attr]) > 1 for
attr in _segmenting_vector_attributes
) || any(series[attr] isa AbstractArray for attr in _segmenting_array_attributes)
check_aspect_ratio(ar::AbstractVector) = nothing # for PyPlot
check_aspect_ratio(ar::Number) = nothing
check_aspect_ratio(ar::Symbol) =
ar in (:none, :equal, :auto) || throw(ArgumentError("Invalid `aspect_ratio` = $ar"))
check_aspect_ratio(ar::T) where {T} =
throw(ArgumentError("Invalid `aspect_ratio`::$T = $ar "))
function get_aspect_ratio(sp)
ar = sp[:aspect_ratio]
check_aspect_ratio(ar)
if ar === :auto
ar = :none
for series in series_list(sp)
if series[:seriestype] === :image
ar = :equal
end
end
end
ar isa Bool && (ar = Int(ar)) # NOTE: Bool <: ... <: Number
ar
end
get_size(series::Series) = get_size(series.plotattributes[:subplot])
get_size(kw) = get(kw, :size, default(:size))
get_size(plt::Plot) = get_size(plt.attr)
get_size(sp::Subplot) = get_size(sp.plt)
get_thickness_scaling(kw) = get(kw, :thickness_scaling, default(:thickness_scaling))
get_thickness_scaling(plt::Plot) = get_thickness_scaling(plt.attr)
get_thickness_scaling(sp::Subplot) = get_thickness_scaling(sp.plt)
get_thickness_scaling(series::Series) =
get_thickness_scaling(series.plotattributes[:subplot])
# ---------------------------------------------------------------
makekw(; kw...) = KW(kw)
wraptuple(x::Tuple) = x
wraptuple(x) = (x,)
trueOrAllTrue(f::Function, x::AbstractArray) = all(f, x)
trueOrAllTrue(f::Function, x) = f(x)
allLineTypes(arg) = trueOrAllTrue(a -> get(_typeAliases, a, a) in _allTypes, arg)
allStyles(arg) = trueOrAllTrue(a -> get(_styleAliases, a, a) in _allStyles, arg)
allShapes(arg) = (
trueOrAllTrue(a -> is_marker_supported(get(_markerAliases, a, a)), arg) ||
trueOrAllTrue(a -> isa(a, Shape), arg)
)
allAlphas(arg) = trueOrAllTrue(
a ->
(typeof(a) <: Real && a > 0 && a < 1) || (
typeof(a) <: AbstractFloat && (a == zero(typeof(a)) || a == one(typeof(a)))
),
arg,
)
allReals(arg) = trueOrAllTrue(a -> typeof(a) <: Real, arg)
allFunctions(arg) = trueOrAllTrue(a -> isa(a, Function), arg)
# ---------------------------------------------------------------
"""
Allows temporary setting of backend and defaults for Plots. Settings apply only for the `do` block. Example:
```
with(:gr, size=(400,400), type=:histogram) do
plot(rand(10))
plot(rand(10))
end
```
"""
function with(f::Function, args...; scalefonts = nothing, kw...)
newdefs = KW(kw)
if :canvas in args
newdefs[:xticks] = nothing
newdefs[:yticks] = nothing
newdefs[:grid] = false
newdefs[:legend_position] = false
end
# dict to store old and new keyword args for anything that changes
olddefs = KW()
for k in keys(newdefs)
olddefs[k] = default(k)
end
# save the backend
CURRENT_BACKEND.sym === :none && _pick_default_backend()
oldbackend = CURRENT_BACKEND.sym
for arg in args
# change backend?
arg in backends() && backend(arg)
# TODO: generalize this strategy to allow args as much as possible
# as in: with(:gr, :scatter, :legend, :grid) do; ...; end
# TODO: can we generalize this enough to also do something similar in the plot commands??
k = :legend
if arg in (k, :leg)
olddefs[k] = default(k)
newdefs[k] = true
end
k = :grid
if arg == k
olddefs[k] = default(k)
newdefs[k] = true
end
end
# now set all those defaults
default(; newdefs...)
scalefonts ≡ nothing || scalefontsizes(scalefonts)
# call the function
ret = f()
# put the defaults back
scalefonts ≡ nothing || resetfontsizes()
default(; olddefs...)
# revert the backend
CURRENT_BACKEND.sym != oldbackend && backend(oldbackend)
# return the result of the function
ret
end
# ---------------------------------------------------------------
const _debug = Ref(false)
debug!(on = true) = _debug[] = on
debugshow(io, x) = show(io, x)
debugshow(io, x::AbstractArray) = print(io, summary(x))
function dumpdict(io::IO, plotattributes::AKW, prefix = "")
_debug[] || return
println(io)
prefix == "" || println(io, prefix, ":")
for k in sort(collect(keys(plotattributes)))
@printf(io, "%14s: ", k)
debugshow(io, plotattributes[k])
println(io)
end
println(io)
end
# -------------------------------------------------------
# indexing notation
Base.setindex!(plt::Plot, xy::NTuple{2}, i::Integer) = (setxy!(plt, xy, i); plt)
Base.setindex!(plt::Plot, xyz::Tuple{3}, i::Integer) = (setxyz!(plt, xyz, i); plt)
# -------------------------------------------------------
# operate on individual series
Base.push!(series::Series, args...) = extend_series!(series, args...)
Base.append!(series::Series, args...) = extend_series!(series, args...)
function extend_series!(series::Series, yi)
y = extend_series_data!(series, yi, :y)
x = extend_to_length!(series[:x], length(y))
expand_extrema!(series[:subplot][:xaxis], x)
x, y
end
extend_series!(series::Series, xi, yi) =
(extend_series_data!(series, xi, :x), extend_series_data!(series, yi, :y))
extend_series!(series::Series, xi, yi, zi) = (
extend_series_data!(series, xi, :x),
extend_series_data!(series, yi, :y),
extend_series_data!(series, zi, :z),
)
function extend_series_data!(series::Series, v, letter)
copy_series!(series, letter)
d = extend_by_data!(series[letter], v)
expand_extrema!(series[:subplot][get_attr_symbol(letter, :axis)], d)
d
end
function copy_series!(series, letter)
plt = series[:plot_object]
for s in plt.series_list, l in (:x, :y, :z)
if (s !== series || l !== letter) && s[l] === series[letter]
series[letter] = copy(series[letter])
end
end
end
extend_to_length!(v::AbstractRange, n) = range(first(v), step = step(v), length = n)
function extend_to_length!(v::AbstractVector, n)
vmax = isempty(v) ? 0 : ignorenan_maximum(v)
extend_by_data!(v, vmax .+ (1:(n - length(v))))
end
extend_by_data!(v::AbstractVector, x) = isimmutable(v) ? vcat(v, x) : push!(v, x)
extend_by_data!(v::AbstractVector, x::AbstractVector) =
isimmutable(v) ? vcat(v, x) : append!(v, x)
# -------------------------------------------------------
function attr!(series::Series; kw...)
plotattributes = KW(kw)
Plots.preprocess_attributes!(plotattributes)
for (k, v) in plotattributes
if haskey(_series_defaults, k)
series[k] = v
else
@warn "unused key $k in series attr"
end
end
_series_updated(series[:subplot].plt, series)
series
end
function attr!(sp::Subplot; kw...)
plotattributes = KW(kw)
Plots.preprocess_attributes!(plotattributes)
for (k, v) in plotattributes
if haskey(_subplot_defaults, k)
sp[k] = v
else
@warn "unused key $k in subplot attr"
end
end
sp
end
# -------------------------------------------------------
# push/append for one series
Base.push!(plt::Plot, args::Real...) = push!(plt, 1, args...)
Base.push!(plt::Plot, i::Integer, args::Real...) = push!(plt.series_list[i], args...)
Base.append!(plt::Plot, args::AbstractVector) = append!(plt, 1, args...)
Base.append!(plt::Plot, i::Integer, args::Real...) = append!(plt.series_list[i], args...)
# tuples
Base.push!(plt::Plot, t::Tuple) = push!(plt, 1, t...)
Base.push!(plt::Plot, i::Integer, t::Tuple) = push!(plt, i, t...)
Base.append!(plt::Plot, t::Tuple) = append!(plt, 1, t...)
Base.append!(plt::Plot, i::Integer, t::Tuple) = append!(plt, i, t...)
# -------------------------------------------------------
# push/append for all series
# push y[i] to the ith series
function Base.push!(plt::Plot, y::AVec)
ny = length(y)
for i in 1:(plt.n)
push!(plt, i, y[mod1(i, ny)])
end
plt
end
# push y[i] to the ith series
# same x for each series
Base.push!(plt::Plot, x::Real, y::AVec) = push!(plt, [x], y)
# push (x[i], y[i]) to the ith series
function Base.push!(plt::Plot, x::AVec, y::AVec)
nx = length(x)
ny = length(y)
for i in 1:(plt.n)
push!(plt, i, x[mod1(i, nx)], y[mod1(i, ny)])
end
plt
end
# push (x[i], y[i], z[i]) to the ith series
function Base.push!(plt::Plot, x::AVec, y::AVec, z::AVec)
nx = length(x)
ny = length(y)
nz = length(z)
for i in 1:(plt.n)
push!(plt, i, x[mod1(i, nx)], y[mod1(i, ny)], z[mod1(i, nz)])
end
plt
end
# ---------------------------------------------------------------
# Some conversion functions
# note: I borrowed these conversion constants from Compose.jl's Measure
inch2px(inches::Real) = float(inches * PX_PER_INCH)
px2inch(px::Real) = float(px / PX_PER_INCH)
inch2mm(inches::Real) = float(inches * MM_PER_INCH)
mm2inch(mm::Real) = float(mm / MM_PER_INCH)
px2mm(px::Real) = float(px * MM_PER_PX)
mm2px(mm::Real) = float(mm / MM_PER_PX)
"Smallest x in plot"
xmin(plt::Plot) = ignorenan_minimum([
ignorenan_minimum(series.plotattributes[:x]) for series in plt.series_list
])
"Largest x in plot"
xmax(plt::Plot) = ignorenan_maximum([
ignorenan_maximum(series.plotattributes[:x]) for series in plt.series_list
])
"Extrema of x-values in plot"
ignorenan_extrema(plt::Plot) = (xmin(plt), xmax(plt))
# ---------------------------------------------------------------
# get fonts from objects:
plottitlefont(p::Plot) = font(;
family = p[:plot_titlefontfamily],
pointsize = p[:plot_titlefontsize],
valign = p[:plot_titlefontvalign],
halign = p[:plot_titlefonthalign],
rotation = p[:plot_titlefontrotation],
color = p[:plot_titlefontcolor],
)
colorbartitlefont(sp::Subplot) = font(;
family = sp[:colorbar_titlefontfamily],
pointsize = sp[:colorbar_titlefontsize],
valign = sp[:colorbar_titlefontvalign],
halign = sp[:colorbar_titlefonthalign],
rotation = sp[:colorbar_titlefontrotation],
color = sp[:colorbar_titlefontcolor],
)
titlefont(sp::Subplot) = font(;
family = sp[:titlefontfamily],
pointsize = sp[:titlefontsize],
valign = sp[:titlefontvalign],
halign = sp[:titlefonthalign],
rotation = sp[:titlefontrotation],
color = sp[:titlefontcolor],
)
legendfont(sp::Subplot) = font(;
family = sp[:legend_font_family],
pointsize = sp[:legend_font_pointsize],
valign = sp[:legend_font_valign],
halign = sp[:legend_font_halign],
rotation = sp[:legend_font_rotation],
color = sp[:legend_font_color],
)
legendtitlefont(sp::Subplot) = font(;
family = sp[:legend_title_font_family],
pointsize = sp[:legend_title_font_pointsize],
valign = sp[:legend_title_font_valign],
halign = sp[:legend_title_font_halign],
rotation = sp[:legend_title_font_rotation],
color = sp[:legend_title_font_color],
)
tickfont(ax::Axis) = font(;
family = ax[:tickfontfamily],
pointsize = ax[:tickfontsize],
valign = ax[:tickfontvalign],
halign = ax[:tickfonthalign],
rotation = ax[:tickfontrotation],
color = ax[:tickfontcolor],
)
guidefont(ax::Axis) = font(;
family = ax[:guidefontfamily],
pointsize = ax[:guidefontsize],
valign = ax[:guidefontvalign],
halign = ax[:guidefonthalign],
rotation = ax[:guidefontrotation],
color = ax[:guidefontcolor],
)
# ---------------------------------------------------------------
# converts unicode scientific notation, as returned by Showoff,
# to a tex-like format (supported by gr, pyplot, and pgfplots).
function convert_sci_unicode(label::AbstractString)
unicode_dict = Dict(
'⁰' => "0",
'¹' => "1",
'²' => "2",
'³' => "3",
'⁴' => "4",
'⁵' => "5",
'⁶' => "6",
'⁷' => "7",
'⁸' => "8",
'⁹' => "9",
'⁻' => "-",
"×10" => "×10^{",
)
for key in keys(unicode_dict)
label = replace(label, key => unicode_dict[key])
end
if occursin("×10^{", label)
label = string(label, "}")
end
label
end
function ___straightline_data(xl, yl, x, y, exp_fact)
x_vals, y_vals = if y[1] == y[2]
if x[1] == x[2]
error("Two identical points cannot be used to describe a straight line.")
else
[xl[1], xl[2]], [y[1], y[2]]
end
elseif x[1] == x[2]
[x[1], x[2]], [yl[1], yl[2]]
else
# get a and b from the line y = a * x + b through the points given by
# the coordinates x and x
b = y[1] - (y[1] - y[2]) * x[1] / (x[1] - x[2])
a = (y[1] - y[2]) / (x[1] - x[2])
# get the data values
xdata = [
clamp(x[1] + (x[1] - x[2]) * (ylim - y[1]) / (y[1] - y[2]), xl...) for
ylim in yl
]
xdata, a .* xdata .+ b
end
# expand the data outside the axis limits, by a certain factor too improve
# plotly(js) and interactive behaviour
(
x_vals .+ (x_vals[2] - x_vals[1]) .* exp_fact,
y_vals .+ (y_vals[2] - y_vals[1]) .* exp_fact,
)
end
__straightline_data(xl, yl, x, y, exp_fact) =
if (n = length(x)) == 2
___straightline_data(xl, yl, x, y, exp_fact)
else
k, r = divrem(n, 3)
@assert r == 0 "Misformed data. `straightline_data` either accepts vectors of length 2 or 3k. The provided series has length $n"