-
Notifications
You must be signed in to change notification settings - Fork 0
/
predictionViz.twb
1049 lines (1048 loc) · 71.6 KB
/
predictionViz.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 20202.20.0614.2338 -->
<workbook original-version='18.1' source-build='2020.2.2 (20202.20.0614.2338)' source-platform='win' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'>
<document-format-change-manifest>
<_.fcp.MarkAnimation.true...MarkAnimation />
<_.fcp.ObjectModelEncapsulateLegacy.true...ObjectModelEncapsulateLegacy />
<_.fcp.ObjectModelTableType.true...ObjectModelTableType />
<_.fcp.SchemaViewerObjectModel.true...SchemaViewerObjectModel />
<SheetIdentifierTracking />
<WindowsPersistSimpleIdentifiers />
</document-format-change-manifest>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<datasources>
<datasource caption='tempPredictOutput' inline='true' name='federated.1gcs1860r32zeb1fyzkz91h12hwx' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='tempPredictOutput' name='textscan.1c35bn21ce6nou1f1s7h90b1f1lo'>
<connection class='textscan' directory='C:/Users/Junyao/Documents/GitHub/Tableau-Python-Temperature-Forecast' filename='tempPredictOutput.csv' password='' server='' />
</named-connection>
</named-connections>
<_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='textscan.1c35bn21ce6nou1f1s7h90b1f1lo' name='tempPredictOutput.csv' table='[tempPredictOutput#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_MY' separator=','>
<column datatype='real' name='Actual_Next_Tmin' ordinal='0' />
<column datatype='real' name='Predicted_Next_Tmin' ordinal='1' />
<column datatype='real' name='Actual_Next_Tmax' ordinal='2' />
<column datatype='real' name='Predicted_Next_Tmax' ordinal='3' />
<column datatype='date' name='Date' ordinal='4' />
<column datatype='integer' name='id' ordinal='5' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.false...relation>
<_.fcp.ObjectModelEncapsulateLegacy.true...relation connection='textscan.1c35bn21ce6nou1f1s7h90b1f1lo' name='tempPredictOutput.csv' table='[tempPredictOutput#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_MY' separator=','>
<column datatype='real' name='Actual_Next_Tmin' ordinal='0' />
<column datatype='real' name='Predicted_Next_Tmin' ordinal='1' />
<column datatype='real' name='Actual_Next_Tmax' ordinal='2' />
<column datatype='real' name='Predicted_Next_Tmax' ordinal='3' />
<column datatype='date' name='Date' ordinal='4' />
<column datatype='integer' name='id' ordinal='5' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.true...relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[tempPredictOutput.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"UTF-8"</attribute>
<attribute datatype='string' name='collation'>"en_GB"</attribute>
<attribute datatype='string' name='currency'>"RM"</attribute>
<attribute datatype='string' name='field-delimiter'>","</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"en_MY"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Actual_Next_Tmin</remote-name>
<remote-type>5</remote-type>
<local-name>[Actual_Next_Tmin]</local-name>
<parent-name>[tempPredictOutput.csv]</parent-name>
<remote-alias>Actual_Next_Tmin</remote-alias>
<ordinal>0</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[tempPredictOutput.csv_5280F5E27DCC4D9C9C557D2581B97625]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Predicted_Next_Tmin</remote-name>
<remote-type>5</remote-type>
<local-name>[Predicted_Next_Tmin]</local-name>
<parent-name>[tempPredictOutput.csv]</parent-name>
<remote-alias>Predicted_Next_Tmin</remote-alias>
<ordinal>1</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[tempPredictOutput.csv_5280F5E27DCC4D9C9C557D2581B97625]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Actual_Next_Tmax</remote-name>
<remote-type>5</remote-type>
<local-name>[Actual_Next_Tmax]</local-name>
<parent-name>[tempPredictOutput.csv]</parent-name>
<remote-alias>Actual_Next_Tmax</remote-alias>
<ordinal>2</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[tempPredictOutput.csv_5280F5E27DCC4D9C9C557D2581B97625]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Predicted_Next_Tmax</remote-name>
<remote-type>5</remote-type>
<local-name>[Predicted_Next_Tmax]</local-name>
<parent-name>[tempPredictOutput.csv]</parent-name>
<remote-alias>Predicted_Next_Tmax</remote-alias>
<ordinal>3</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[tempPredictOutput.csv_5280F5E27DCC4D9C9C557D2581B97625]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Date</remote-name>
<remote-type>133</remote-type>
<local-name>[Date]</local-name>
<parent-name>[tempPredictOutput.csv]</parent-name>
<remote-alias>Date</remote-alias>
<ordinal>4</ordinal>
<local-type>date</local-type>
<aggregation>Year</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[tempPredictOutput.csv_5280F5E27DCC4D9C9C557D2581B97625]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>id</remote-name>
<remote-type>20</remote-type>
<local-name>[id]</local-name>
<parent-name>[tempPredictOutput.csv]</parent-name>
<remote-alias>id</remote-alias>
<ordinal>5</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[tempPredictOutput.csv_5280F5E27DCC4D9C9C557D2581B97625]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column datatype='real' name='[Actual_Next_Tmax]' role='measure' type='quantitative' />
<column datatype='real' name='[Predicted_Next_Tmax]' role='measure' type='quantitative' />
<_.fcp.ObjectModelTableType.true...column caption='tempPredictOutput.csv' datatype='table' name='[__tableau_internal_object_id__].[tempPredictOutput.csv_5280F5E27DCC4D9C9C557D2581B97625]' role='measure' type='quantitative' />
<column datatype='integer' name='[id]' role='dimension' type='ordinal' />
<column-instance column='[Actual_Next_Tmax]' derivation='None' name='[none:Actual_Next_Tmax:qk]' pivot='key' type='quantitative' />
<column-instance column='[Predicted_Next_Tmax]' derivation='None' name='[none:Predicted_Next_Tmax:qk]' pivot='key' type='quantitative' />
<column-instance column='[Actual_Next_Tmax]' derivation='Sum' name='[sum:Actual_Next_Tmax:qk]' pivot='key' type='quantitative' />
<column-instance column='[Predicted_Next_Tmax]' derivation='Sum' name='[sum:Predicted_Next_Tmax:qk]' pivot='key' type='quantitative' />
<layout _.fcp.SchemaViewerObjectModel.false...dim-percentage='0.5' _.fcp.SchemaViewerObjectModel.false...measure-percentage='0.4' dim-ordering='alphabetic' measure-ordering='alphabetic' show-structure='true' />
<style>
<style-rule element='mark'>
<encoding attr='color' field='[:Measure Names]' type='palette'>
<map to='#4e79a7'>
<bucket>"[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Actual_Next_Tmax:qk]"</bucket>
</map>
<map to='#4e79a7'>
<bucket>"[federated.1gcs1860r32zeb1fyzkz91h12hwx].[sum:Actual_Next_Tmax:qk]"</bucket>
</map>
<map to='#e15759'>
<bucket>"[federated.1gcs1860r32zeb1fyzkz91h12hwx]"</bucket>
</map>
<map to='#f28e2b'>
<bucket>"[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Predicted_Next_Tmax:qk]"</bucket>
</map>
<map to='#f28e2b'>
<bucket>"[federated.1gcs1860r32zeb1fyzkz91h12hwx].[sum:Predicted_Next_Tmax:qk]"</bucket>
</map>
</encoding>
</style-rule>
</style>
<semantic-values>
<semantic-value key='[Country].[Name]' value='"Malaysia"' />
</semantic-values>
<date-options start-of-week='monday' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
<objects>
<object caption='tempPredictOutput.csv' id='tempPredictOutput.csv_5280F5E27DCC4D9C9C557D2581B97625'>
<properties context=''>
<relation connection='textscan.1c35bn21ce6nou1f1s7h90b1f1lo' name='tempPredictOutput.csv' table='[tempPredictOutput#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_MY' separator=','>
<column datatype='real' name='Actual_Next_Tmin' ordinal='0' />
<column datatype='real' name='Predicted_Next_Tmin' ordinal='1' />
<column datatype='real' name='Actual_Next_Tmax' ordinal='2' />
<column datatype='real' name='Predicted_Next_Tmax' ordinal='3' />
<column datatype='date' name='Date' ordinal='4' />
<column datatype='integer' name='id' ordinal='5' />
</columns>
</relation>
</properties>
</object>
</objects>
</_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
</datasource>
</datasources>
<worksheets>
<worksheet name='Max Predict'>
<table>
<view>
<datasources>
<datasource caption='tempPredictOutput' name='federated.1gcs1860r32zeb1fyzkz91h12hwx' />
</datasources>
<datasource-dependencies datasource='federated.1gcs1860r32zeb1fyzkz91h12hwx'>
<column datatype='real' name='[Actual_Next_Tmax]' role='measure' type='quantitative' />
<column datatype='real' name='[Predicted_Next_Tmax]' role='measure' type='quantitative' />
<column datatype='integer' name='[id]' role='dimension' type='ordinal' />
<column-instance column='[Actual_Next_Tmax]' derivation='None' name='[none:Actual_Next_Tmax:qk]' pivot='key' type='quantitative' />
<column-instance column='[Predicted_Next_Tmax]' derivation='None' name='[none:Predicted_Next_Tmax:qk]' pivot='key' type='quantitative' />
<column-instance column='[id]' derivation='None' name='[none:id:ok]' pivot='key' type='ordinal' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style>
<style-rule element='axis'>
<encoding attr='space' class='0' field='[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Predicted_Next_Tmax:qk]' field-type='quantitative' fold='true' scope='rows' type='space' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Bar' />
</pane>
<pane id='1' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Actual_Next_Tmax:qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Bar' />
<encodings>
<color column='[federated.1gcs1860r32zeb1fyzkz91h12hwx].[:Measure Names]' />
</encodings>
</pane>
<pane id='2' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Predicted_Next_Tmax:qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Circle' />
<encodings>
<color column='[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Actual_Next_Tmax:qk]' />
</encodings>
</pane>
</panes>
<rows>([federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Actual_Next_Tmax:qk] + [federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Predicted_Next_Tmax:qk])</rows>
<cols>[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:id:ok]</cols>
</table>
<simple-id uuid='{AA32AA96-FF15-4A1E-B65F-3B081BD9ACE4}' />
</worksheet>
<worksheet name='Min Predict'>
<table>
<view>
<datasources>
<datasource caption='tempPredictOutput' name='federated.1gcs1860r32zeb1fyzkz91h12hwx' />
</datasources>
<datasource-dependencies datasource='federated.1gcs1860r32zeb1fyzkz91h12hwx'>
<column datatype='real' name='[Actual_Next_Tmin]' role='measure' type='quantitative' />
<column datatype='real' name='[Predicted_Next_Tmin]' role='measure' type='quantitative' />
<column datatype='integer' name='[id]' role='dimension' type='ordinal' />
<column-instance column='[Actual_Next_Tmin]' derivation='None' name='[none:Actual_Next_Tmin:qk]' pivot='key' type='quantitative' />
<column-instance column='[Predicted_Next_Tmin]' derivation='None' name='[none:Predicted_Next_Tmin:qk]' pivot='key' type='quantitative' />
<column-instance column='[id]' derivation='None' name='[none:id:ok]' pivot='key' type='ordinal' />
<column-instance column='[Predicted_Next_Tmin]' derivation='Sum' name='[sum:Predicted_Next_Tmin:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style>
<style-rule element='axis'>
<encoding attr='space' class='0' field='[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Predicted_Next_Tmin:qk]' field-type='quantitative' fold='true' max='38.035676302123811' min='4.0798258098761906' range-type='fixed' scope='rows' type='space' />
<encoding attr='space' class='0' field='[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Actual_Next_Tmin:qk]' field-type='quantitative' max='41.059999999999995' min='0.13999999999999346' range-type='fixed' scope='rows' type='space' />
</style-rule>
</style>
<panes>
<pane id='2' selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Circle' />
</pane>
<pane id='3' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Actual_Next_Tmin:qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Bar' />
<encodings>
<color column='[federated.1gcs1860r32zeb1fyzkz91h12hwx].[:Measure Names]' />
</encodings>
</pane>
<pane id='4' selection-relaxation-option='selection-relaxation-allow' y-axis-name='[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Predicted_Next_Tmin:qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Circle' />
<encodings>
<color column='[federated.1gcs1860r32zeb1fyzkz91h12hwx].[sum:Predicted_Next_Tmin:qk]' />
</encodings>
</pane>
</panes>
<rows>([federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Actual_Next_Tmin:qk] + [federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Predicted_Next_Tmin:qk])</rows>
<cols>[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:id:ok]</cols>
</table>
<simple-id uuid='{DA27202F-F5CF-4D12-AE43-1721CECFCA53}' />
</worksheet>
</worksheets>
<windows source-height='30'>
<window class='worksheet' name='Max Predict'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='1' param='[federated.1gcs1860r32zeb1fyzkz91h12hwx].[:Measure Names]' type='color' />
<card pane-specification-id='2' param='[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Actual_Next_Tmax:qk]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Actual_Next_Tmax:qk]</field>
<field>[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:id:ok]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{9CC93B5B-66BF-48F3-8ABA-A93804166787}' />
</window>
<window class='worksheet' maximized='true' name='Min Predict'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='3' param='[federated.1gcs1860r32zeb1fyzkz91h12hwx].[:Measure Names]' type='color' />
<card pane-specification-id='4' param='[federated.1gcs1860r32zeb1fyzkz91h12hwx].[sum:Predicted_Next_Tmin:qk]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:Actual_Next_Tmax:qk]</field>
<field>[federated.1gcs1860r32zeb1fyzkz91h12hwx].[none:id:ok]</field>
</color-one-way>
</highlight>
<floating-toolbar-visibility value='1' />
</viewpoint>
<simple-id uuid='{0C4980F9-49B2-456E-A4DB-5F13FCCFFBC0}' />
</window>
</windows>
<thumbnails>
<thumbnail height='384' name='Max Predict' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOzdd3wc530n/s/MbC9YAIveQZAE2JtIkVSjaUkWJbkldmIrcRzbqbYvySU+
J5f4Ev/i+HdxbCdK4ku7cxKnXxyXuMmSaBVSYhc7wU703ncB7O7U+2NJYEHsYmcXiwXI+bxf
L9ricj54nl3MM9+d9oxgGIYBIiKyHHG5O0BERMuDBYCIyKJYAIiILIoFgIjIolgAiIgsigWA
iMiiWACIiCyKBYCIyKJYAIgoqY5LR/HCG+fmvPaNv/k8jlwfXaYeUa7ZlrsDRLQyBUqq0ehx
AADCI304f6UNPQPDKNE4ecD9gnsARJRU79UTePHIJUwP3cKnP/N5DI2NoadveLm7RTnEPQAi
WtDl00ew/R0/hfc8uwfTN99c7u5QDnEPgIgW5HQ6MTE+BsPQoWracneHcogFgIiSkuxOuJ12
tOzaj+krL+N3f/8PcaF9FHZJWO6uUY4InA6aiMiauAdARGRRLABERBaV9CqgUCgEbZlP9mia
Bk3T4HA4lrUfRET3qxV7DkCWZciyDJ/Pt9xdISK6L/EQEBGRRbEAEBFZFAsAEZFFsQAQEVlU
XuYCmhwbQOv1DkiSBNHhxZaNzZga7cOlG92QBAOltatRXxGEwBsMiYjyJi97AC5/EDt37cKO
HTsghnvQMxbB8eOnseWBndi5axda3zoKHSvyYiQiovtWXvYAbDYJ0cgUhvt7MBS1o7nAhbGS
ANo7ehB0qXD4SyBCgKZpUFUVAKAoCmRZRiQSyUcXiYgsJ2/TQYfGRjAamoJNEqBqOmwOJ6ZD
o9CnAK/XDQMGJEmCJEkAAOH28SC3252vLhIRWUpeDgFpmo6yqjps3rINq4rtuDUwhLbucWzb
sgkbNm3CeF8HFJ2HgIiI8ikvewDDve3o6B+DJAmQZQlbW8oQiFbi+ImTsAsGyhpa4BB5BpiI
KJ84FQQRkUXxPgAiIotiASAisigWACIii2IBICKyKBYAIiKLYgEgIrIoFgAiIotiASAisigW
ACIii2IBICKyKBYAIiKLYgEgIrIoFgAiIotiASAisigWACIii2IBICKyKBYAIiKLYgEgIrIo
FgAiIotiASAisigWACIii2IBICKyKBYAIiKLYgEgIrIoFgAiIotiASAisigWACIii2IBICKy
KBYAIiKLyksB0DUVnbeu4czZcxgen4JhAIZhYHSgG2fOnMXg2GQ+ukFERAnyUgAmx0dgLyjD
lk3rcenE6xiejKHv5gVc65/G5s0bYYOWj24QEVECWz4aKQiWw28YUJUoBFGCJIk4f6MbOx/Z
h0gkhkCgAACg6zo0LV4MVFWFqqqQZTkfXSQispy8FADAQPetq7hy9RrswQYEXCLGx0bR1dkJ
UZfRORjGE/v2QhAEiGJ8p0QUxZk/RESUe3kqAAJqm1pQ29SMaycP4WpfCIVFxVi1phlum4CB
nh8iqhnw2ERIkgQA0DQNoijCZstTF4mILCYvW9f+zpsIqxK8LjuGJjWsKXCjuLkBp8+cR11Z
ATRXAC5JyEdXiIjoNsEwDGOpGzF0DeNjo4gqGgKFxfC4HACA6fA4QtMySkpKYJPmHuqRZRmy
LMPn8y1194iILCkvBSAbLABEREuLZ1iJiCyKBYCIyKJYAIiILIoFgIjIolgAiIgsigWAiMii
WACIiCyKBYCIyKJYAIiILIoFgIjIolgAiIgsigWAiMiiWACIiCyKBYCIyKJYAIiILIoFgIjI
olgAiIgsigWAiMiiWACIiCyKBYCIyKJYAIiILIoFgIjIolgAiIgsigWAiMiiWACIiCyKBYCI
yKJYAIiILIoFgIjIomz5aGRybACt1zsgSRJEhxdbNjZDFAQYhoo3X/4BqrfuR2OZLx9dISKi
2/KyB+DyB7Fz1y7s2LEDYrgHPWMRAEB76znA4URoSslHN4iIKEFe9gBsNgnRyBSG+3swFLWj
ucAFeWoUneMGmsoKMHJ7OU3ToKoqAEBRFMiyjEgkko8uEhFZTl4KAACExkYwGpqCTRKgqhou
nnwLGx54FLHO0zPLSJIESZIAAIIgAADcbne+ukhEZCmCYRjGUjeiadrMhr3zwjGMeaoR6r4J
r78Ao93XEHZU44m3PQSfc/aIlCzLkGUZPh/PDRARLYW87AEM97ajo38MkiRAliVsbamCu6kW
ADAQEDHuWjVn409EREsvL3sA2eAeABHR0uLXbiIii2IBICKyKBYAIiKLYgEgIrIoFgAiIoti
ASAisigWACIii2IBICKyKBYAIiKLYgEgIrIoFgAiIotiASAisigWACIii2IBICKyqLw9EYxo
OY1NRtEzHEahz4XqoG/miXNEVsYCQPe97x67gX9+pRURWYVNEvHQ+mp84p3b4HRw9Sdr4wig
+1prxzD+7qUL0PT4c49UTcfrF7pQGfThg/vWLXPvlpahKIicPpN2OakkCGdTUx56RCsNCwDd
145f7ZvZ+Cc62tpz3xcAPRLB8J88n3Y5z8MPwfnJT+ShR7TSsADQfU1McaxfFHkOwArU0TFE
z59Pu5yjaRUctbV56NHKwgJA97Xd66rwnWM3oGr6nNcf3lCzTD2ifFK6uzH6V3+ddrnCn3rO
kgWAl4HSfa25phi/9MxWBLxOCALgctjw1AONeNfu1cvdNaJlxz0Auu89sb0Bu1uqMDA+hQKP
A6UBT04vA1UHBmFg/nmGRILdAVtxUc7apJVFj0ahTUykXU4qKIDoduehR+awAJAl+D0O+D2O
JfnZvb/xKUBVF1zGuW4dyn/vfyxJ+2bEBAmtnjIM2b2olMNoiQzBbujpg2RK5PQZjPzZn6dd
rviXfgG+ffuWvkMmsQAQ3eemRDv+pmInrrlKAEEADAObp/vxsYFTcLAIWBrPARDd514JrMI1
d2l84w8AgoDz3koc9dctb8do2XEPgJZVOCKjd2QSPpcdVZyiYUlcd5ekeD2Ix0LtSf/NMAxc
aB/Gt45cx8D4NBrKC/CTj7agrtTP39F9hAWAls3rF7rw9y9fRGgqBpsk4oG1Ffjku7bDzSka
csqrySleV1JmWjtH8IWvn0BM0QAAg+PTuNI1ii989FGUBjxL0k/KP440WhYdgyH81ffPzmxg
FE3H0cu9KClw4yNPblrm3t1fHgm144K3Apowe8TXrmt4KNSRMvP9E7dmfjd3hKZlvHymA88t
0x3U2uQk5GvX0i5nq6yEvbIyDz269+WlABiGjp72mxiaiKChaQ2K/G7A0NHVdgMjkwqaW1rg
dkj56AqtEKev98/bwADAm609LAA5ti4yhI8OnML3ilswZPeiSg7jPSOtqJVTX7Y4HIokfX0k
xev5oPb0YOiPvpR2ucD734fAj/9YHnp078tLAQiNDEDwlmBLnQ+HDr6EjQ89gbHOVrhL6rGh
0oYXD/4ITx94IuVt+5S5yVdexejf/O+0ywV/9Vfg3bM7Dz2aa+Gr5nOj55c/Dm1sfMFl7LW1
qPziF/LQm8XRo1F0/+xH0y7n3rUTpb/+X+e8JgDYNtWHbVN9815PZXVVEW71zy8Qq6t4L8P9
JC8FIFBSiQLDgK7KECUbBAFYs34rAECTpyDLMgwAuq5D1+OXpamqCk3ToCipj1PmkqHrQCyW
fkG7HYJt5R8507T5365TLZevzzjR5oYgnHZp3l7A7uaKnPXHMFFlDMPIy/tfbDu6yayhz7aT
mFloY5+YueOdOxtwvm0Q/WPTM6+trSrEI+src/J5mR5vNhsEux1AfJtgRuI6rWmZZ7KRr3Zy
LU9bMgPdt67i8pUrsJc0ochjB2BgpK8Dbxw/j72P7YckCDCAmSsMBEGY+bMYiqqjtXMYI+Eo
mioLU17FoFy/geE/+Hzan+d///vgf/e7FtWnfDD7ueXiM85GQ3kAv/j0Fnzt4CWEpmOwifGT
wB/Yty7v/clLe8Li2hEFk1dsC4ljKPPMHaWFHvzBhx7Cm5d7MTA+jfqyAuxpqYTDlpsrx9Wu
Lgx95nfTLud757Mo+MmfiHczi3U6X+PAdDtYnvGWSp4KgIDaphbUNjXjyonXcbV3AkG1F0cv
D+GpZ5+F8/ZKJQgCJCl+LkCSJGiaBgmCqVusRZcLonfu1QnjUzF88esncKV7NP4zRQHv2r0a
z+1bN282SFUydw5CFEXYFrEHoMsy9PBk+na8HoguV9btiKK5gbrY97MY+zbXYceaiiW7DNTM
jxIEIS/vX8Di2tFt5r5hJr4fzWZunU71GRT6bXhm19I8J0DPYrxpWWQUMT/jWjTbjrR84y2Z
vPSkv+sWpnU7fG4HRqc0rPK78NaPLmDLg/sQGhsBRBtKiguTDn61vw99n/p02jb8Tx9A0c98
aM5r//f1KzMbfwDQdAP/efQGNjWUYMuqssW/sSxEz53D8Jf/JO1yRR/7KPxPPD7v9YmpGM7e
GsR0TMW62mLUlxWsqG8UmfK7HWiuKV7ubhBZUl4KQHl1PUaGhxCRFWzZ/Qi8bgd2PfQopmMy
ohoAyb4k7Z67NTjvNf32DS7LVQAWo31gAn/09ZMYnIgfl7VLIj64rwXvfLDpni4CVmUYBnpH
p/C9E7fQNTyJqmIvntnZyJutVgjDMPDWjQG8fLoD4YiMDfUleOeDq1DgcS5313ImLwVAECWU
lFXMeS1YVongErfrdiZ/e/fijUaaruPvXro4s/EH4tfO/+vrV7CtqRy1pf5l7N39R9V0nL01
iPaBEMoCHuxYUw6vK7dfVAYnIvj8/z2Bscn4ydCbfRM41zaMz/zkLv4+l5lhGHijtQdf+c6Z
mSfKXesZw9XuUfz2Tz4IV463IaOTMVzoHEVM0bCmMoCG0vzcFX/vbQkz8Pat9fjbFy/MueTQ
67Jjz7qqZetTtmRFx7WesXmvK6qOaz2j99QGY/APvwC1t2/BZcRAABWf+//y1KO5VE3H899+
C8ev9s+8tqoigN98/y4U+7M/L3O3l890zGz87whNy/jhW+34+ad4L8Ry+4/D1+Y9TrS1cwTn
24awqzl3N5rd7A/hq69cRSgSvzpIEgU8vb0WT26uXvIicF8XgHdsb0AkpuKFU20ITcdQW+rH
hx/fiKqgL+dtDYcieLO1B+FpGS01xdjWVAZJyt1ce6IowO20QZmef1u/17U00xwvFW1kFOrg
/MNziSQl+fQF+fDGpZ45G38AuNU/gW8fvYGPPrkxZ+0MJFxiOef18eSv0+KMSS6c8tdgUnJg
VWQUG6cHIKW4I8UAMDA+lfTfcvn7UTUd3zzePrPxB+LnKl843YWt9cUoL1zaaTfuywIgt7dj
8PP/EwDwIIAtsgpF0+Fy2GA/IaL79nL+pw8g8N73LLq99oEJfO5fj2FiKv5tThCAt2+pw88f
2AzJ5NU46ThsIvZvqcO3j96Y83pV0IdNDckn+8qH8A9fxMQ3vrngMqLHg6o/TX/ieyH9v/MZ
qINDCy5jKytFxef/YFHtAJhz4UCiy10ji/7ZierK/Dh1Y34hrLuH9ubuFT2OAvxZ1V6EbPE9
OKHQwJ5wB54bPJe0CAgA6koL5t0MF389d7+fqKKhe3R+oVF1Ax1DkywA2TA0HXo4PPN3x+0/
UGNInP3cMHMjiglfO3hpZuMPxG9A+tG5TuxdX43NjaU5aUMQBPzEo80QRQE/OtuJSEzFhvog
PvLExpwfm86EIctzPuuky5i8KW0h+uRU2nZ0T26etFSQ4sExuT759+S2ehy70o/ehA1AWcCN
p3c25rQdAr5RsmFm4w8AhiDgqL8eO8I9WB9J/sXip/evxx/++3HI6uxWY/e6Kmyoz90XLpso
wO2QMBmdf5mvz7304/q+LACLZQDochUhZHOiNjKOgBZdcPlkx+YNA7jRN56zAgAADpuEDz7W
gp94pBkG4scKOX1G7u3fUocXTrUjKs8OSkkU8NSOhpy2U+Bx4LPP7cbBc53oHp5EZbEXj2+p
RcB7/1xlYoYBoMcZwLjdjZroOArVhcebAeBooAEHi9ciJLnQGBnBjw2dR6Wc+gtCm3P+pcaG
IKDDVTSvAEROn8bQHz+PQgC/YvPheFEjpiUnVk8NYsflLvR+M77HUPThn0l6qXYmnHYJe9aW
4+XzPXNerwl6sbqiYFE/2wwWgLtMi3Z8tWYPrnviG26boePdgxfw6NiNebfTG7oOaBqKvQ70
jd81SZZhoMhlg6EogChBWMT5gDvt3DFzy4l+15w6kgRhEYec7m4npUW2s9JVFHnxe8/txj/8
qDV+FVChGz/20Fo8sKY8p+0IggC/x4H37lk5D6g3DCPt4y0BAKIIweSNWQuJiDZ8repBtPri
VwlKMPD00CU8PnI15fQVRwMN+Jfy7TN3+l32VeArzgA+3fFKyi9rAS2K6N2XmxsGAkmKjaHP
fgZV6jje23cmeUf0xT9NTRAEPLO9Fk67hCNXBxBVNKyrLsR7d9XDYfJGvsVgAbjLd8s24rp3
9h4BVZDw7bJNaIiMoD4695t+9MIFDP3PL+CRolX4evVOGAnfxstjIVR+6bPo0hUUfuinUfDM
01n3afrIUYx85X+lXa74l38JvscezbqdyZdextjffy3tcqWf/hTc27dn3c69YHVVEX7/Qw8t
dzfyThseQe9/+ZW0y3n370fwF35u0e29WLIOrf7ZK2o0CPh+6QY0Rkaweno4aea1wqZ5t3lP
2N0446/GvvGbSTNPjl3HP5VtmzNGK5RJbJla+Gq0fLBJIp7aWoOnttbkv+28t7jCXfTNv7xL
EyVc8ZbPKwB3PDh2C6Jh4HDJGkxJTqyaGsKBgQvw6Ctn0icyZ+jLfwwjuvAhCFtVFYo/8rP5
6dA9xjAMxBQtftGFXYJNEhe8lPGib/4l2bogotVbkbIATNqSHyKblFIfOtsT7oQAA68GmjAp
ObA6OoJ3jVyG1+JjlAXgLrYUD8lO9ToQvzJg13gbdo23LVGvKF+il1phTC98mZ9jevnmxF/J
NF3HC6fa8YNTbZiYiqGy2Iuf2rcO25pS33VvM5IfclxovDVND+NMQe2c1wTDQGM09VVaAoA9
4S7sCXct/CYs5v49kJulnROd8+YRdmsyNk7mflfRABCSnBi1e6CYnbnR4sKSE98t34w/b3wb
/qFmN9rcwbw8W4DSO3yxB//82mWMhqPQdAPdw5N4/j9Po2solDKTbLw5dBVbwj0pEsC7hi+h
VA7P5ARDx96JNrRMLXxvCc3HPYC7PDFyBZOSA6cCdZBFG4LKFN4zcB7lC1xhkI2YIOFbFVtx
tqAGsmhDRWwCP953Fk2R5Lu9BEREO/6m4VF0u2ev6Ljkr8bHOg9jLQf/snv1fNe8ZzDEFA1v
tPbig48lv6LlsbEbCNlcOF7YgKhoQ5ESwbsGz6M6lnoG4FJlCp/qeA3n/FUISS40REexZnoo
5U1dlBoLwF3sho73D5zFO0auICbaEFCicBrmpuI1ywDwg7KNOFq0aua1HlcR/r5mNz7VdjDp
lQn5pEHAqaIGnCpshCxKWB/uxWPDV+HSc/s5ZOpsoBbdrrlPpJIlG14uXc8CsAJE5OTrRzTF
60D8UM97Bs/j7SNXEZXsKFCjptYzry5j70R7tl2l21gAkhCAJd0IGxBwMlA/7/WQ3Y0r3go8
uIwrtgHgldJ1+GH5ppkrJro8QfS6ivDhzjeW9ZjhkMOXdJL/ISfvnF0JNjeWonNo/p5yujvV
BQAFWgwFWm5uzCTzeOB5GRhI/aAKsw+wWCoRyYE3gmvmXC4HABcKqtHjWt7nwVbGQkmf81gZ
Tf/AIFp6797dhI31s3P8CgLw1I4GbG/K7f0TlDvcA1gGIgysm+zHuYK51/06dBWrl/lQRky0
YSrZZXaCgFGHF7UpLoXNh80TXThW1IhbCfdpuDQZTw1eXLY+EaCNj2PiP74BAPh5VcfVyVEM
h6KoL/Ojvq0P4397DADg3LAB3j27l7OrdBcWgGUgAPix/rMYtXvR5Y5/q3boKt7bfzbnJ5sz
5dFkFMrTGHXOnTFVMAxULfM3baeh4ec7DuNoURPaPUEE1Aj2jt5EeSz1VSa09PSpKUwe/NHM
3xtu/8EAkHhBrWC3swCsMFkVAEPXoGqA3R4/XKErMUR1ER7n0k5eNG5z42hRI0btHtRGxrBn
vA32Ba4XXskK1Qh+re1HaPcEMS05UB8ZRYEaTXn7e744dBVPD5zHv9Y8CC3hcNRjw1dRsszF
CQBcuoq3jVwFcjsxJ5ElZVUANDmML3zuD/HUhz6OUgzhK3/5j/jZ//ZZbKgpzHX/ZvQ7/PhK
/WMI21yAIOBEoAGnA3X4eMchOFLcTLLS2WCkvNtxuQgAtk10okSexOnCesiChPXhPmwI9yx7
cSKi3MqqANhchfivv/5x/NonfxWDWgBf+tPnsaZy6Tb+APDD0vUI2xOm+xUEtLmDOBWow17e
gZtTAoC6yCjqIsnnxafFMXQdQ1/8ctrlHKsaUfj+9+WhR2RVWRUANRbC8198Hgc++mk0uCfw
t3/+PH7p1z+F+pLcP2nrjh5XkgIjCMlfp2UxJTlww1sGVRDRNDWEgBrhXkMK0TMpZphMdI8e
3qR7R1YFQLQ58cu/+VkUF8Xv7mveuAMxaWnPJweVKQw677qb0DAQVJI/to3yq80dxD/U7sW4
I/4EI5cm44M9J7A5lPqWfiJaXllttQXRjvNvfAPff+0kDMkOXRXwC7/xWzl9YPbd9g9fxU13
CeSEOb2DyhR2jncsWZtkjiJI+I+qHTMbfwCISg78W9UurJ78HrzL2DeifAuLDlz2liMi2tEU
GUG1PLFi94SzOwQUHceLR6/g8R1rMV3zEEKXDiHgz83j+FJZMz2EX+h6E68F12Ds9lVATw5f
hp93Dy5IB3DGX4PjgQbERBvWTfXjsbEbcOdwWodxuxv9rsC81yOSHV3uYrQYy3/1EFE+9DgK
8FdVuzFij3/tsekanh25jCfGr+ekCEwdPYbQt/8z7XJFH/4QXOvXz3lN03UcudyHw629cNol
vH1zbZZ7ABDhcHtRX1+Bl9t7UBgNoWMwhMqCpdsDEBAvAmumF34wOM0yABwubMI3y7dAvz3b
6C1PCTpdRfhYz7GcTZ5lM3TYDB1ykhlNnbqKFfv1hyiHdABfL908s/EHAFWU8L3gOmyYHkC1
vPj7VfRwCEpH+qMe+l1TlhuGge+eaMM3j96YuZn+QvtwdlNBSC4/3vXEY6jZ+nb4Ji5jzFuH
jbXB9EHKK1mQ8KNg88zG/44Lvip0uOc/IzVbAWUa68K9816vjo6jllcSkUUogoRbrvnjShUl
tCV5fTE0CDheshZ/2XIAf7r+Wfywehsidz/yMkE4ouDlM51zZlLRdCP7PYCy0kJcOH8JLdv2
ABChKCrgXN55bGguWbRhwpZkr0wQMGz3YlUkN3dTiQDe1/sW7LqOiwVV0AQRq6eG8L7eU5aa
olcWJJzxVaHHUYBSZQrbJ3ss/8QpKxFhwK0rCCeZz8ujyzlrxwDweuVGHKzaOjNnV7+nGP3u
IvzMjVch3jXmohcvoe/4WYQjQdy9O55VAVCiY/jyl5/HQ/sfhygIACQ0tGzK5kfREnLqKkqU
KQw65s6WKRhGfGK1HPJpMp7rOY5onx0G4nfs3r0i3s9igoS/qNqD6+6S+CxohoFDhavwiZ4j
KEzxoHK6v9gMHXtDHXixuHnO62VyGC05PHQdlRw4WtYyb8LGq4FqdHuDqJuae3Op3NYGvPIS
/BvfjZBz7iUZWRUAyeZB07rN+LEffx8kHt9dseyGhmeGLuEfKnfOmdZh7/gtVMfGc96eAMBt
0W+8Rwrqcd1TOvuCIKDHGcDBojV43/CF5esY5Y0A4OmRKxAMA28G4g+4WRMZwfuGzuf0+eCy
aMN0igkbxx3eeQUAAFyagv295/Cdht0zh4TtmprtZHAGBq8exU//9JHbBcCOX//cF7G9Mfm8
31NjA7h0vQOSJEFy+bF5/Vpo0RDOnGuFDqB543YU+RzZdYVSEgBsC3ejWJnGiUDd7auABrAt
1M15wHMs1THetmWeQpvyyw4d7xy9jGdGr8AAIMHI+TUQbk1GUWwSI66590UJho7K6eSz9QoA
Hhi6jpJoCGeDq2DXVTwwdD3LuYDUKLwNO/Evf/5fTC3v9AWxc2d8Ct/zR19Bz1gNus8dweqd
+1HiVPHCK2/gwJNvg5DkYR+0OAKAhugoGqI8GbuUUh3mWYoHCxmIP1RIhwARBoQl2MhQ9uIH
xZfu8KddV/FU92n8+6qHoYi3N+GGgUf7L6FkgUO7AoDG8AAawwMzr2V3EliyYbztEv76q1+9
/QNsePI970NdiqkgbHYJiixjZKAHgxEbmv0OXIoKCPocEOCAzYhBMwBB16Cq8evTFUWBLMsw
ouau81dVDZFI/NInVTabUWcyitmMosxkZNnciR1lsRnF3O5jYkZZwowsy0CGmTttAIBuYooD
wzDmZAwTGX1eJn2/dEOfkzFD1+dnHp5ow5sF9YhIs3uyDl3Fvolb8zNmOgZA12YzRiy+fhoA
zvqq8YPS9Riy+1CmTOKZoUvYPNkLAYCmzY4DPWqu+CRmtJjZjJqQyXy8qTFz42DOGDWZURIy
pseburgxqpjNyErG69vcNlUIADaOd6L48gs4V9wIRZSwNtSL5onZCRtlWYZwp2/qAo/kzLQD
hmFAEB34wM9+BNGZSThF+N0LTwU9PNCD/sFROBw2aLoOA8LstxYBgIH4ISIpfqz6zt6A05Xk
WFeyN2KT4HbHb0aLOcxmbDMZwWzGbp/JwGHusJU9IWNkkdHt5qbZTsxoWWRUkxmHwzGTUUxm
Zj4zAKIgIt38rYIgzMkISe4xuJs4L5O+X6IgzsmYIYrzM6XKFH6l5018N7gOvY4ASpQpPDV2
FWsiw/Myhm5ujh9Rms3ot9/MdU8pvla1a+acTp8zgL+vehCf7DqEpsgIJGl2HGgmi3NiRnWa
u5dHkmbHjuLMfLzJTnPjIDEjmszYEzKmx6htkWPUbMZhz3h9S6TaZzfZVZExVEN7V0EAACAA
SURBVPUkP+QzZ4zaUm/mMy4AXedewxW5Gk/uMv9gB103UFm7CpW1q9B54Rhu9ofhseuYjGnw
2Q3ohgSRB6XpHiYAqI+N45O9R5e0naOBxjkn9IH4deZHChvRlKPLesk6Mi4AkdAornZGsLok
MSqgvLoG3hQPhBnqaUNH/xgkSUA0KmJbSyF032acOXkMdkFD85adty8nJaKFTKe42Sci8iIK
ylwW5wAMnDr8IkZvnpzzYz7w859Ac1XyqZnLa5tQXnvXi8EqPPJwVebNE1nY2ukhtPoq572+
Znp5nyVN96YsCoCAd7zvI3juia257w0RLeih8Vu47inBJW/lzA1nmyZ7+VAkykrGBaB2y6Mo
0uefxOhuu4nSuibOBkG0hFy6io/1HMN1TykGHX6Uy2Gsnh66Z5+NTcsr4wLgCZTCk+T1gZ4u
FNY2wdz1AESULbuhY/3UANZPDaRfmGgBvPaGiMiiWACIiCwqZwXA6XTxdnQiontIVgVAlcP4
0Stvzvz95oUzKG3eAg9PABMR3TMyLgCaqiA8Pow3j5zE1NQUJidDeP2Fb6NtMGzq1nsiIloZ
Mr4KaPDmWfzFP/4HLl3uwBe/GJ9TvqRuHbbUJ58KmoiIVqaMC0Bl80783u8248RbN7F3zzYA
wPTECGKyDLd96R4KT0REuZXlA2GAIy/9B8IaUIoB/Ou3XsMvfvq3UehlASAiuldkVQBsjgL8
3C9+FP/tN34To0YBPv9HX8Lq8oL0QSIiWjGyugpIiY7jK3/2N/jQr38Of/Tbv4R//avncb0/
tw8ZJyKipZVVAZAcXvzaf/8MavyAEKjFRz78HMoKePiHiOhekt0jIQ3gX/76yxjTHIjaq9Dk
GMau9/8iAh7OSU5EdK/I7hBQbAJ9UT8+8bGfhMcGFHkcGA5N57pvRES0hLIqAHZXAOXSML70
l/+E1rNH8dKlAbRUF+e6b0REtISyOwQk2vELn/59XL98ASNTOjZt3pz2ofBERLSyZFwARruv
4vuvnpjz2o2rV/G2Z96N2qAvZx0jIqKllfEhIKevCC0tLWhpacHaNauByCi+993vYyKiLEX/
iIhoiWRcALyFZdixfSs8YgwHX/wBppyV+Iuv/h9srClaiv4REdESyfgQ0FjPVXzx+b9CcNUW
PPdzn0TQ7wagQdF02CU+X4aI6F6RcQGYHBnAtCZB6L6O//MX12d+zIc+/mtoqeZeABHRvSLj
AlC7+VE8/8ePznu9r7MDsl4EB3cCiIjuCTnbXPd2tkHWc/XTiIhoqfH7OhGRRWX9PAAiIsre
1NGjGP/Hf0q7XNFHPwrPAzuWpA85KwB2hxN8JDARkTlGTIY2OpZ+OVlesj5kWAAMjAz0YnTe
xG8CGjduh0fKWb+IiGiJZbwHcO38CZy83DXvx7zzAz8Nv8eZImVgYrgft7oGUN3QhLIiPwxD
Q/v1a5jUbGhpXg27yP0HIqJ8yrAACNjzxHux5wnAMHSoqjbzL5It9Y8a6+9E97iOzZs34thr
B6Hv3If2t15D1ca9WO1S8OJLr+Dpd+yHKLAIEBHlS1bnAAxdwd/+yefw2qkrEL1FkCej+MwX
/wQbapNPCV1UUY+iCsDQNUBToWoGorKOQr8bTrsLghY/xqXrOnQ9fi2pqqrQNA2Koprqk67r
UBRlJptpRjOb0bSEjJZm6ThtsRltZWVUNfPMneUBwDCMtMsbRi4y6ftlGMacjBmLzRi6ueul
DX02o5tsb7EZTTWXyWa8aVo2GW1RGU1bwoy+2HbMjlE1IWNu3ZmTWWB9y6oAKJFxdE4X4JMf
fBojlY8gevFleFIe/omLTYfwxqFDKG7YiOoiN+wtjTj06uvw21VUrd4IAQIgAMLtvQBBECAI
AkSzh4ZuLw8gq4xgdu8ji4zAjPnP937NJK7bosmrrxMyopB5RljCjHDXWF26zApep7HYjKnI
XX3LIrPAclkVAMnmhmDEUFZfg+/+4AX4JjtRH46iMehNurwaDeEHP3gZDz1xAGUBDwAZb13o
wFNPvwM2Efjhd78HeXU1nJIISYqfSZYkCZqmzfw9HVEQYLt9GEoTM8+oZtsRxZmMYnLuo8SM
mE3G5AYjXxlJyjxjSzhEaGawCEIuMun7JSSsA2ZllcFsxuweQGI7us3cN8zEjGYzt07PeT8m
x4EgzK4DRhZjR88io2UzRs1uC+aMgyXMSNm0I2Uxrs1lsisADi8+/nMfQWFpKZ4d1zFt243N
damfCNZ28RSCTZsgyFMYGppCQWEhiv0SbnV0w2fToDt9PAlMRJRnWRUAVZnES9//NkIzhwsl
rFrbjIZSf9Llq9dug2tiEtFoFADg1QU8+Mh+DA8OQtbtePLtj/EEMBFRnmVVAETJhT2P7Yei
A4CBF779LTgcqR8J6Skogqdg/kyhpRWV2TRPREQ5kOUzgW2ob2zCnYss6ouc6BoOoSrgymHX
iIhoKWV3CCg2gS997g8wEov/XfKU4FPlgVz2i4iIlljWJ4E/9qu/hZKS+InfWDQCuzP1ISAi
Ilp5spoOWomM4u++9nWIoghRFHH4m/+IU23Due4bEREtoYz3APquHMef/d2/48q1LvzO73QD
ho6e/hD+4NkPL0X/iIhoiWRcAMrXPIDf+e16fP3bh/DcB94NABAlCTaTN2kQEdHKkPEhIFGS
4HYXIBYNweZwwul04Dv/+L9xc2hyKfpHRERLJKtzALoaQU/fEAzDgGEAenQSo+ForvtGRERL
KKurgGzuQmyvc+K3f/dzCLp1TKAYz9QFc903IiJaQtndCCZIeM9Hfg17e7swKQsoKfJDMHTw
GfNERPeO7J4HYBiYGBnE1dYLeP3QGxic0PCJ3/odtFQV5rp/RES0RDIuAMPtF/GVr/4LIqqI
lo0bEYno+N0v/CFK3bwKiIjoXpLxMZvp8UH0jUawcdtOPLR3N4J+Ly8BJSK6B2VcAGq3vA1f
/v//B9aUu/Gdf/sHnG69jL/96tcwzKuAiIjuKRkfAhIEAb5AMXY/9iQefPQJxCKTuHbpEmTF
3PMtiYhoZcjqJPAdgiDA5fFj887dueoPERHlCa/bJCKyKBYAIiKLYgEgIrIoFgAiIotiASAi
sigWACIii2IBICKyKBYAIiKLYgEgIrIoFgAiIotiASAisigWACIii1rUZHBmaUoUF89fgAoB
sHmwdfN6iIaCC2fPQjFE+Ior0NxYnY+uEBHRbXkpAJMT41i1fit8LhuunDyE9qEwpttOo6Bx
O+pLffnoAhER3SUvBSBQUgHAQHRqAtd7x/DYJjeODU1gdUkfzvZGsGpNCwq8TuiaBlVVAQCK
okCWZRjRmKk2VFVDJBKJ/7dsNqPOZBSzGUWZyciybCqjLDajKBlnlCXMyLIMZJi50wYA6Iae
dnnDMOZkDBMZfV4mfb90Q5+TMUPXF5kx0zEAujabMWLm1k9Nmx0HetTcQ5oSM1rMbEZNyGQ+
3tSYuXEwZ4yazCgJGdPjTV3cGFXMZuTE8WY2IydkVFMZWZYh3MmoqTN5KQCGYaCv7TJOtXbi
4cefQsAtYHpqGoGSatTVAC+89CMceOYA7JIE6fbjJQVBAAA4XU5TbdhsEtxuNwAg5jCbsc1k
BLMZu30mA4fDVMaekDGyyOh2e8YZLYuMajLjcDhmMorJzMxnBkAURKR7fJAgCHMygpD+dJU4
L5O+X6IgzsmYIYqLyxh6+mIGAKI0m9HNvBkAkjQ7DjSTxTkxozpdJjOzY0dxZj7eZKe5cZCY
EU1m7AkZ02PUtsgxajbjSByjZjOOhDFqbpM9Z4zaUmfyUgCmhjtx/PIA3vn0O2AT4ytySTAA
m8MBu9MOv1OEahiww9xKTkREi5eXAtDd0QaPz43zZ88AELCqeT0e2LkDb711Ai6nDYGqJrhE
XpBERJRPeSkALQ/sQ8u8V8vw8MNl+WieiIiS4NduIiKLYgEgIrIoFgAiIotiASAisigWACIi
i2IBICKyKBYAIiKLYgEgIrIoFgAiIotiASAisigWACIii2IBICKyKBYAIiKLYgEgIrIoFgAi
IotiASAisigWACIii2IBICKyKBYAIiKLYgEgIrIoFgAiIotiASAisigWACIii2IBICKyKBYA
IiKLYgEgIrIoFgAiIotiASAisigWACIii7Llo5HwcA/OXe2E22XH2Pgk9jzyCLwOCVosjG/9
2z9jzWMfwJaGwnx0hYiIbstLAXAFyvDQ3ioIAFpPvI7esSmsKfPj3OkzaNm4HpphAACM2/+f
+N8JL6U1mzcfyjhjGHP6mXE7Wb2flZUxjITfzxK1wcxdmWzWmwzay3zsZD4OjISxY76VxW4L
VljGWORnbbo5c7+fvBQAu90Ow9DRce0Cbo0D7yjxY7z/FmLuSpQ7hjF8ezld16GqKgBAURTI
sgzIMVNtqJqGaDQa/29ZNpdRZzOK6Yw6k5FlxVxGUWbbUcxllBWeEe581iYzd9oAAN3Q0y5v
GHMzhqmMcVcmfb90Q5+TMUPXF5kxudHQtdmMETM3DrLJaAljR88io8XMjZ3EjGo2kzDeshmj
imIuo+QtkzjeVHOZxDGqmszIs2N0oUxeCoChqzj++kHohfV4+sl9EAwZR05ews5HHsP4rW5E
MQVNL4QkSZAkCQAgCAIAwOl0mmrDJklwu90AgJjDZMY2mxHMZuz2mQwc9owzhsmMPSGj2zPP
aFlkVJMZh2M2o5jMzHxmAERBhJZmeUGYmxGE9KerBEG4K5O+X6IgzsmYIYqLyxh6+mIGAKI0
m9HNvJm7MprJ4iwljB3V6TKZsc2uA06HqYzNNpuRs8iIWWRgN5exJ2SMLDK62UxWY9SRMEbN
bbLtjtmMYkudyctJ4J5rpzEqlmJdQwUmxscgKzrWbViHsaEBDI2OY3R4ELKW+e4XERFlLy97
AIWVTWhxTGBsbAyAAIfbh8amNQCAhtpKKKIbbjsvSCIiyqe8FABfIAhfIJj03xxuP8ztPBER
US7xazcRkUWxABARWRQLABGRRbEAEBFZFAsAEZFFsQAQEVkUCwARkUWxABARWRQLABGRRbEA
EBFZFAsAEZFFsQAQEVkUCwARkUWxABARWRQLABGRRbEAEBFZFAsAEZFFsQAQEVkUCwARkUWx
ABARWRQLABGRRbEAEBFZFAsAEZFFsQAQEVkUCwARkUWxABARWRQLABGRRbEAEBFZlC0fjehq
DK0XLyKmGRAdfmze2IxoaAiXr3cAuobiqlVorCmFkI/OEBERgDztAYTHR1GzZiO2b98B53Q/
OobDGA9HsWXrduzYuRNXz5+Erhv56AoREd2Wlz2AQEklAANyJIwbvSN4dLMbhaV+wDAw2n8L
McEDQQA0TYOqqgAARVEgyzKMaMxUG6qqIRKJxP9bNptRZzKK2YyizGRkWTaVURabUZSMM8oS
ZmRZBjLM3GkDAHRDT7u8YRhzMoaJjD4vk75fuqHPyZih64vMmOkYAF2bzRgxc+unps2OAz0a
zTijxcxm1IRM5uNNjZkbB3PGqMmMkpAxPd7UxY1RxWxGThxvZjNyQkY1lZFlGcKdjJo6k5cC
YBgGBjqv4fi5m3jo8QModNtg6BrOn3wTAxEHnnnyMYiCAEgSJEkCAAhC/ICQ0+U01YbNJsHt
dgMAYg6zGdtMRjCbsdtnMnA4TGXsCRkji4xut2ec0bLIqCYzDodjJqOYzMx8ZgBEQYSWZnlB
EOZkBCH9zqo4L5O+X6IgzsmYIYqLyxh6+mIGAKI0m9HNvBkAkjQ7DjSTxTkxozpdJjOzY0dx
Zj7eZKe5cZCYEU1m7AkZ02PUtsgxajbjSByjZjOOhDFqbpM9Z4zaUmfyUgCmR7tw5HwX3vXs
AdjE+Ip89fQbmHbX4okHV/HYPxHRMshLAei8eQMevxfnz54BIGBV83q0dfWhuNaPM6dPA3YP
tm5sju8FEBFRXuSlAKzbtR/r7nrtwHs/kI+miYgoBd4HQERkUSwAREQWxQJARGRRLABERBbF
AkBEZFEsAEREFsUCQERkUSwAREQWxQJARGRRLABERBbFAkBEZFEsAEREFsUCQERkUSwAREQW
xQJARGRRLABERBbFAkBEZFEsAEREFsUCQERkUSwAREQWxQJARGRRLABERBbFAkBEZFEsAERE
FsUCQERkUSwAREQWxQJARGRRLABERBbFAkBEZFF5KgAGQqMDuHjhIobHJ2de6+28iWu3uqAb
Rn66QUREM/JSAMb6O9HWP4k1a1fj6ltvYCAUxbUzRzAUcyLojOLQ8QtgCSAiyi9bPhopLK9D
YYUAGDpEXYOs6egYCGHf1mrYBSB24YfQ9U0QYEDXdQCApmnQNA2qqppqQ9d1KIpyO7uEGU1L
yGj3fEbLIqOqmWfuLA8Ahok9PsPIRSZ9vwzDmJMxY9EZk3u8hj6bMRRz62diRs8io5kcb0bC
2FFVk+tnFhltkRnT4yBfGS2bTOJ40zPP6KkzeSkAgiBAiU7ijddfQ0HtetQU2XHBsMEmCLf/
PT5ABCG+7F1ps60kZE1mhHskM+8zyV1GSMjM/+xzm8nU/ZoxU8zigYSM+WGQsA7kJ5PJR5Fp
RrhXMuYiKy6TlwKgxsL4/vdexO63H0BFkReAAYeoQdENOMT4FyJBECCKs12VJAmSJMFmk0y1
IYoCbLb429EkkxlhNqOazYjiTEaSzB1BW3RGzE9GNJmRpMwzd5YHzG08BSEXmfT9EhLWAbMW
mzEW+EaWKqObbC8xI2SRgWQ2M7sOGFmMHT2LjOlxnZBRxMwzYjYZs32TsslICRmT4zoxs8AY
zUsBaL94CqVrt8MJGWNjCrx+P1bXluJ86w2Uu2LwlzXO2fgTEdHSy0sBqFi9GeLIBMbGxgAI
cLi9aFi/HQVD/ZhWC7G7qcT0rg0REeVGXgqALxCELxCc93pxaSWK89EBIiKahzeCERFZFAsA
EZFFsQAQEVkUCwARkUWxABARWRQLABGRRbEAEBFZFAsAEZFFsQAQEVkUCwARkUUJRpK5abu7
uyHL8nL0Z4ZhxJ8NIGoa5I7OtMtLRYWwlZQAAPRoFEpXd/pMcRFswfgUFXokAqW7J23GFiyG
VByfwEKfnobS05s+U1oCqbAwnpmchNLXnz5TVgopEAAAaOEw1P6B9JnyMkgFBfFMKAR1YDBt
xl5ZAdHni2fGx6EODafPVFVC9HrjmbExqMMjCy4vSCIcq1bN/F3u7IQRW3j9EmwSHI2Ns5n2
Dhhp5uAX7HY4GupnM21tMNLMIS84HXDU1c1mbt2CkWbOddHlhL22dubvsRs3087xL7rdsNdU
x/9iGPFMGqLXA3tVVTyi65Bv3kqf8Xlhr6yMZzQN8q22tBnJ74etojyeURTI7R3pM4EC2MrK
4hlZNjdGCwOwlZbGM7EY5M6u9Jl8jdGSIKSionhmagpKb1/6TMIY1cNhKEs1RivKIfr98czE
BNTBofQZk2M0aQFYCQzDgGEYpqcbBgBVVSGKYkYZRVEgSVLGGZvNltGc8NlkZFmG3W7POONw
OEwvn6+MYRhQVRV2u910Rtd1aJqWcUbX9Yyma85XRtM0GIaRcQaIT4++lBlVVSEIQsaZTMfb
/TZG7/VxvWIPAd0pAJlmsmknm8xK7hszmf9u8pHJRr7WtWywb5h5guFSt7NUmRVbAIiIaGnl
ZTrobCQ+dtAsURQzzkiSlLdMpjJ96tRKz2T6GWR6SOJOJpNDBUB26022fctmnc5UvjLZjINs
Put8jutMreTxZiYjffazn/1sxj85D5INlvDYAI4dPYrW1iu42d4Jm7sAhX7PzL+bWVHUWBjd
/eMIFPhSZAxcPHUU5662o7K6BnZJhBIJY2g8Ap/XlTRjGAaunDuBGz3jKA96ceTQIfSOTqOq
sgx3HnSWrm9dN67CXlACe8I4vDszHZ6AYXdBEoD+zms4/OYJGA4/igt9Mw/UuXsgK9FpRBUD
DruIq+dO4sKV6whFgfJg4cwjE+/OdF+/iFuDkygNFkJM0ee7M4Ym4/TxN9A2MIlCh4LXDx3B
lO5EeTB+kizZhtnQZFw+fwbHT5zA1ZsdkJw+FAd8M/+eLKPJEZw9dRynz1/EjRs3EY7pKCsN
znzO5gqAjls321FUXDSTuft3M9R1Ha+/eRKeojIUeJwAdHR19SAQKEiRMTDUcwsnTrciWFaG
G+dP4sLVDpRWVsJ5+7Gm6QrA1Gg/BsMaCm6vZ8kymhrDVESB02FHdHIUh157HX3jUVRVlM78
rua1o2sYD03D5XJgtK8NR06eRXffCKqqKyGlyERDQzj21iUEy8rgSPFY1mTvp+vGRRx7qxXl
FaU4+eYh3OwZQV1t9YLjYHpiBCeOHcFbZ86hf3gchcFSuB2zG69kmYnhXhw5chSXL19BW0c3
HL5CBHzuBTN3i4ZHMTAeRcHt3PxxreHc8TfQ2taHyqoq2CQB0dAoxiIavC5H8oyu4eLp4+gc
mkJJgR1vHjqMobCCyvKSOeNtob61X78KT1EJpIRF7l6np0ITEO0uiALQffMS3jh2GpK3EIV+
T8ptQWx6EoohQlCncfjQYbS1d67cAnA3dXoER09fxwO7HsTaNavRUFeD3mtnMW0LosjnTJpR
ImHcuHkLQ0PDGB6O/xkc6MW06kBFaWHSzFT/DfTrpdhU78fBQ6fRvHYVlMgEBsaiKCkuSJqJ
DN1Ad7QIDUU6Dr56HNse3ge3PIyw4UXAm7xvPa3H8K0fHUdPRxuuX7+Oy62X0NU7gOKKGvhc
yU969t24DBRVwqGGceZyFx5+aDe6r12Aq7gSbkfyQdp74xJ0fzlskSG0jxnYs3MbJnpuQQqU
wm1Pnhns6YQKFaeOnUBIBipKgykLwR1d1y/AFmxCtU/GG+c68fb9j6H32iUU19bBniL61tHX
4a9egw2NRVAdlbBNdaFjVEFVaVGKVgycePMQqtduxab1zVjV2ABRHsfl9iHUVJamyOhov3EN
fQNDM+vA8PAwegfG0FBfkyKj4cz5K3ho704cfeUggvVN8NiBtludqKgsT94zXcOZC1ewY+t6
HHn9FbhKV2Nrczmu3BxAVcX8hyEBgBIdxz/9/T+hp68P169fx9WrV3DtZjtEV8FM4bybPDWG
rv4QSooDOH3yBDY8sBcBjOHmoIaKEn/STDQ8jPbBMMqCfpw914oH9z6Mcr+Oa51hVJQmbycy
PoyJqIprF06jrWcIpeWVcKZYX2beT3gArd3TeHDbWrzy0kFsfXg/KlxTaBsRUFbkSZrRImN4
/fgFbNu5G4IcQ8v6NTh//Ah8FfXwpFinlXA/jpzvxO49D2LN6tWoq61Ee+tpGJ5SFHiSn/SM
TU3g+s22OevAQG83VHsBSot8STMTXZcx4arH6hIRh09eweqmOkTHhzAaE1FckPz9jPVcxYRU
gVL7JF47dgG7Ht0HfbwHuqcYXmfyb+Q3Th/CC4dPo6v9Fq5fv47WS5fQ3TeIspr6lGO069pl
OIOVkGIjOHdrFI/s3Ykb50+juKYOjhSP122/dgmuogp0Xr6A2g070NJUe++cA4hMTKCqqRl+
rxsOhwNOlxvrNq7DxMgClyDqMbx88DVEojHEYnf+yFjo1IgSjaG4NIjC0jo8sLoAb751LW3f
JsfCqG6oQXltE4IlQZQFPAgGg4hFIikzlc07sG1NNYpKq/DEUwewZ+cOPP7UAZQH3Ckzd8Sm
wiivroPL5UJDdTkmI6kvqZQkAZFIDLqmobC4CJIkweWwQV3o5JUgobF5C55957Oo8ul44bvf
xuETF6DqqT+5qKyjsrwEpVXVKPL74XTYUVHgwaSaKqFCcgfRWF0GX7ACiISxdvMuCJGxBd65
Bpu7CJWlhXA4HHA4naisXw2blvpzBgScOnwQAxPTCetAFNoC7wUw4PH64fL48fjjj+CNV16D
kuZcn6HL8BcE4SsoRk1JIWoa6uAJFEHSYikzNmcAj+9/GF5fAXY/sh9PPPYw9j66H5vW1KbM
zFJhdxeiyO9BeX0TjKmJlEuKooTo7XXR7fPDaZfg9nigKgtdiiugqKwGTzz1DB7cvBrHD72M
F156BRPTqTORySmUV1fD4ytESVkpin0uFFZUQ5tM3bfw8ADWbH4AhX4PSlwSFFcx9uzdgf7O
1JduTo6MoGHdRnjdLjgcDrjcXjQ3NyE0Hkr9brQIXjz4esI6EN8WLESWFRSXFqO0ejVaygWc
utS+4PIAMB2OoKqmAjVNa1FcVIRinwslRQFEFmircdMurG8oR7CiDk8eeBq7H9iBdxx4CsWe
9Fe/TY2Po6ahAS6XC43lQYRiqS97FqEjElMAuwsFXhdsdufKPQdwN195LUZefQUHb7hR6PdA
iU5hJBTDvscfT5mxe0uwb8daOCoasbYy/k1Hnh7Dza7UK0qgdjXOHTmHxod3oaZ5B0aOvYbv
vHAaLdsfSZkprq7EmbYOVG+sx9atmyAAGB0Zga+8OWVGlOzYtP1BRELDOHTwJUSiGspbti34
Gbj9Hpw6/Crk0Agatz8KwED34ChWbV6VMlPR2IKjh1/DVVVAKBRB9xUnbAUVeMSb+vIw4fb/
CKKI6lXrUNXYguHeLsQ0A7YU3y4qK0rx+sEfQoIBX4Efx06exPDoJJ7ZnKoVCZIawqnTZxEZ
60PV+ocA6BDEhVZJG4o8Ol544SWUlhQDhorhoWE0b9u7QEbAgXc+jcOt49i6e+vt1zScO3tp
wXYghxGKaijwlWDv5np88+vfQEFpPbamSAiSC5FIGADQ0LIFdpeIWGgUcCX/dgnED6FUr2pG
ZV0j3jp+BEMjYaze/tAC/QIkuxO9t06jp+0SVEd8z2KkqwOu0rKUGYe3GAW4iR+88DIiU2FM
TIwiNKnibU/sT91QwiE1f3E53v7kAchTExidnkYgxbdsf1kVTrx0EB2XnbDbXTj85hGoU2PY
sOfJlM0EKmpw8pUjmKwqR3vXKA5sBKbHJ+Dyl6TMFNatwfmXX0aHK4CA6u5uPAAAB9hJREFU
14XY9CQmogbe9rZ9qT+Dggo8srkBRbVrUR+Mf3ufHu1DTzj1nm2wbjWOnDqHmr070LRpN8YO
H8T3z41g66PvSJkpKg3iZncfStdUYOuWDRAADI+HULKqPmVGsruwdeceTI7249WXXkRME9Cw
MeXiAAC3x4Hjh1/F1PAgNjx2AICBrrEwNq9JvZdWv2Yd3jj0KsbGQugYHIU6Nb5y7wNIRZGj
mJyKwOHywOtOfnhlIfHLwwAxxYYsGV1ToRkC7CmOhSYzNTkJt89nbhfLMNDf24NgZc2ccwAm
gohGZbhc6T8HVY5hcjoKj8+X8pjuHbFIBDaXe84xSDN0XYMBEZJgYLC/H4HSCjhtC7whQ0df
dwdETxBlwQKYbc7QNYRCYQiSDX6fF7FoDC63K31w9idgejoCjyf5bnzShKEjHJ5CQUHywyzJ
yNFpRBQDAb/X1PKhkUEY7gCcgpHR+4nFItB0AZ40GUPXEA5PwuZwwe2yIxZV4EoxhjRFhgoR
TntiQdYRjaTOAPHxpek6bJKE8PgINMkFl9224DqqxiJo7+xBdX0j3A4Jhq4hpmhwOVN/SdE0
FdFIBLKiwun2wu20QTcAaYHzP5qqQDMEOG6/J0PXoBkCbFKqjAFNVaEbAuy3M6oiQxekBcbQ
7QwE2G+fhJ0MheD2+SGl3OYYUBUVhiDCLgno7e1DWUVF/H6JlIdeDaiKAkOQbm+XdESmY3C6
XWkz0ZgM3QB8Pu+9cwjoDrvDhaKioqw2/sCdk4QZXoUg2TLa+AOA1+zGP94pVFRnuvEHAMHU
xh8AbA4nCgsDaTf+AOB0Z77x/3/tm9lvE1cUh7+xHS9je8bjfclKAoXSFFooFQgodKGFVH3o
P1i1VStWtYQ0sZNAJdSXSpWSViGYQFIgodkcZ7HjkMT29ME4mIprF4mXiPs9+9PYDz73zu+c
A5WowWpRQLEQjsXrF38AxUKspYPIKxT/imZF9/nQvB4UxSSdTr/iNy0zce/+KxmKUmZqsvFW
bS12p52/HzTe3q2iBcLoqoV0+sErPcfhsDKRbrxZrFisaLqO6nKgKNuk6zjWJvt/ij/AVl0H
Kv8v27NpGq8vgOYymZiov1lsc7jo2tu108cqbuaYnBJv/Ja3cgwODHBzKMXM8lNUp53N/BL3
6zmbqyT7Bxjou87dR5Xt28LKPFPT4k3cYmGZZP8Av9y4zsRMZUN+IzvH9PyK0NnMZUgOJOnr
7WVythJnFnOLTGfEqUNheY5UMklf73UeLeaIJxKsTt9nZlkcbeYzT0ilUtzo7WVmKQ9YyD+Z
ZFacubI6/5hUapDbv/+JU1WxKMruiYAkEijRd/kH1kpNNbccE4sa5rAwPSvx84/fsWFx1Rwy
Jk1arK5z9btv2LZ7XnCcRoswAiqXt7j6/beUHN4ap4w72CF0StsFrvzwI6bT84KjR/YKneLT
HJcvXkL5j+NPHBD9GLYKy1y+dA2bqzaOKhFq7RY6m7lFLl3pxa66X3CiHeKY8unqHBev/YKz
xjHLRVr3HxM6hewMF39KobqfO+XiFp2HxJHr8swj9p/4jHajieG+G0TDF2j0Xrb0aIruMz20
uMsM9fcTCZ6n0dUpM/2Qw2d7iLmKDA6kCAfO0+j6tDgzzZGPewjZN0klhwl9dr6BAYv/zPLh
pz0Y1g2SyV8JftHYmZ+b58SnPXhZZ2DwNoHz4lhqx5nPcPrcBdZn7vLbH+OcPXZQHgCS3YSV
zrY4ef0AR/cnnhXAMqMjf9V19rTGKMXe573Oak5eYnRkrIETpanjON1t1QmeIqMj40LDojTR
3hzF+9ZJDjQbNc5d8VNsLlrjIULdZ9gbq07jbDM6ck/o2BxumiNBWo5+QkeoWva2GB0Rv9HY
XTrxkJ99Jz6n2V8ttJuMjohv8w6Pn2jAx7tnLhDdGUx4yuiI+I3GqYUI+zSOnfuK4LPJvHIx
z9i4uKGrGlGCmofTX36Nz1Vpem5vrDDxUDwM4DF0Hi9kwR/no49P059KcuSDbkxTXM68AR9P
FjK0dkU4/dFxkkODvH/oLVDER4fH0HmYWSbREeTUyaMMDw1z+O12TJc40vPoHuayK0Rb/Jw6
fphbw7c41BXH9AsV3JrKyvIawbiPkx8e5Obwr7zTFsT28qHDiuN2sbqWxwhrnDy6j6GbtzkY
81IvBFRVB6u5DZr3vM0/T4b4Y8y5e8ZAJRKAYCxOIZfDbzzfYyiVzbrZfDieILe6RsD/fOSx
kRNJJMit5AgY2v9zFIVIIk5+bR2/r/oZs6ETjcfI5zYwavYfSmXQNEHzWFGIxiPk17fwadVC
ZDZ2oiHWN0roNXsz9R0L0WiQwqa5MydfeY5S14lFAqxvKTu7DCYmpmnBK+qDKBZiET+FohWv
Wr2Tm5hY8XhePhFnc2msryzgNwxsdpXWeICxv8YJNrdheAWO6iOfncPw+2lyuGmO6IyNpQm3
tKO7X142m1SdXHYBw29gd3mJBz3cGb9PtK0DzfXy/oTDrbO2VHEcqk7UcDCWniTRvkc43u30
aKwsZTAMH06PQVizcefeQ1o6OnELRmFVr0Y2k8UwdFxeP0G3wp2Jx7R1duESZMker5elTBaf
TyfW0s7q7NTuawJLJBKJ5PWw65rAEolEInk9yANAIpFI3lDkASCRSCRvKPIAkEgkkjcUeQBI
JBLJG8q/nn+uxer5DPYAAAAASUVORK5CYII=
</thumbnail>
<thumbnail height='384' name='Min Predict' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOzdd3wc930n/M/MbMfuYhe9gyBBgL2TYpFIiaK6bMeJ43PJ2Y7P8aWen9Qn
7e6ce86X8uS55HyX5jS32Ja7ZUkkJYqSSJESeydAgChEIXpdbJ+Z3/PHEiBA7AKzS2BZ5vN+
vRSHg/lgfruY3+87fSQhhAAREZmOfK8bQERE9wYLABGRSbEAEBGZFAsAEZFJsQAQEZkUCwAR
kUmxABARmRQLABGRSbEAEFFSN668h/3vXpgx7Qdf+RKONw/foxbRQrPc6wYQ0f0pt6AcNS4b
ACAw1IOLjW3o7htEgcaHBzwsuAdAREndvHYSB49fQWigFb/3x1/CwMgIunsG73WzaAFxD4CI
5tRw9jg2PfNJ/MyLOxBqOXavm0MLiHsARDQnu92OsdERCKFD1bR73RxaQCwARJSUYrXDabdi
xba9CDW+gf/y3/4Ml9qHYVWke900WiASHwdNRGRO3AMgIjIpFgAiIpNKehXQ+Pg4tHt8skfT
NGiaBpvNdk/bQUT0sLpvzwHEYjHEYjG43e573RQioocSDwEREZkUCwARkUmxABARmRQLABGR
SWW1AOi6Bk3Tb/1LQNNUqKqG+/Q8NBHRQy1rD4MTQsOJtw6gX/fhQ0/twkBHEy61D8FjVWEv
WIa1y8vBG8yJiLInawWgr60BrpJlcA6MABC42NCCXU8+B4cFOLD/ANbUls2Yf3KvQNf1JL+N
iIjuVlYKgBYL4kr7CB7bvgZ9AyMANMR0C+yWxDa/LAO6DsiSgKqqAABVVRGPxxGLxbLRRCIi
08lCARC48N4R+MpWYnhoGBMTAUyE41AkAV0AigRAAJAAWZZn3PkrhIDD4Vj8JhIRmVBW9gCW
rNqIYCSOSCQINR6HqgoU5drQ0T+KEmcMcPigSDwDQESUTVl9FIQej6C9exBLl1RAV2NovtaI
sCajbsVKuGzKjHn5KAgiosXFZwEREZkUbwQjIjIpFgAiIpNiASAiMikWACIik2IBICIyKRYA
IiKTYgEgIjIpFgAiIpNiASAiMikWACIik2IBICIyKRYAIiKTYgEgIjIpFgAiIpNiASAiMikW
ACIik2IBICIyKRYAIiKTYgEgIjIpFgAiIpNiASAiMikWACIik2IBICIyKRYAIiKTYgEgIjIp
FgAiIpNiASAiMikWACIik2IBICIyKRYAIiKTYgEgIjIpFgAiIpNiASAiMikWACIik2IBICIy
KUs2FjI+eBMNrV2wKArCUQ1bt23BcNtlXOkJIs9thyu3APXLqiBlozFERAQgSwXAnVeCbQVl
kABceO8w+scjGB4ew7qN21DksWejCUREdIesFABZltDT2YrOrpuIyXlY7XNiGAKtjZfRLjRU
1a5ESZ4HmqZBVVUAQDweRywWQzgczkYTiYhMRxJCiMVfjEA8FsP4yCDOnb+EDTufQIHHDkBA
U2PYf+BNPPf8c1Dk2weBYrEYYrEY3G734jePiMiEsnISOB5XYbXZkV9cjmUlXvSNBjE+NgYB
CYpigSwBPAFARJRdWTkENDbQjdbuQSiKBMWah7UVfvS0XUNjUzN0NY4N2x+DLLECEBFlU5YO
AaWPh4CIiBYX7wMgIjIpFgAiIpNiASAiMikWACIik2IBICIyKRYAIiKTYgEgIjIpFgAiIpNi
ASAiMikWACIik2IBICIyKRYAIiKTYgEgIjIpFgAiIpNiASAiMikWACIik2IBICIyKRYAIiKT
YgEgIjIpFgAiIpNiASAiMikWACIik2IBICIyKRYAIiKTYgEgIjIpFgAiIpNiASAiMikWACIi
k2IBICIyKRYAIiKTYgEgIjIpFgAiIpNiASAiMikWACIik2IBICIyKUs2FqKpMXS2t2IkEEV5
dQ0K/V5AaLjR0oQJzYr65UthVViLiIiyKSujbmh8FE5/GdavW41rZ45hYCKKq2eOIWzLR3W+
DUfeOwchstESIiKalJU9AE9eEdxCIB4NQZcUWBUJ3YMh7N1SBIsEaGeuQBcCkhDQNA0AoKoq
VFVFLBbLRhOJiEwnKwUAEOhqvYZrzddh8VXA45CgQYEi3fqxBAghIMsSZDmxUyLLMmRZhqIo
2WkiEZHJZKkASKhctgKVy+rRfOYomm5OwCZriGkCdgUQOiDJEiRJmhrwNU1jASAiWkRZKQA9
HS0Yiwi4HFb0jauor3Mhd1k5zp6/BL8thrzKesiSNP8vIiKiBSMJsfinX4WuIzA+hqiqwePN
hcNmBSAQHB9DTJfhy/VAuqMAxGIxxGIxuN3uxW4eEZEpZaUAZIIFgIhocfHieyIik2IBICIy
KRYAIiKTYgEgIjIpFgAiIpNiASAiMikWACIik2IBICIyKRYAIiKTYgEgIjIpFgAiIpNiASAi
MikWACIik2IBICIyKRYAIiKTYgEgIjIpFgAiIpNiASAiMikWACIik2IBICIyKRYAIiKTYgEg
IjIpFgAiIpNiASAiMikWACIik2IBICIyKRYAIiKTyrgACCEghFjIthARURZlXAAuXLmGA4eP
QddZBIiIHkQZFQAhBCaCIew/dBQHDr8LXdcXul1ERLTI0i4AQgjc7O3HgcPHoGoaXn3jHex/
k0WAiOhBY0ln5oNvHcPVplYMDA5jdCwAIQR0XeDVN96B3W7Dk489AkmSFqutRES0gNIqAPW1
NXjr3ZMYDwSnTgJv27QGTz++Cx63i4M/EdEDJK1DQNUVpdixZQMAQAgda1bW4hc+8gFUlBUj
1+tZlAYSEdHiSKsANLd2oOtmL375Mx+FO8eFsuIi2GxWA0mBUGAEbW3tGJsIAwDikQm0t7ai
tbUV3b2D4LVERETZJQmDF/NHYzEcePMYnn1yF2xWK9o6uiAEsGxJ5bzZ0b4OtPYFUV1eiCvn
zmLV9scxfv0sJryVqPS7oFjtiUNI0zKxWAyxWAxutzvTz0ZERHMwfA7AZrXiA8/sgSwndhqW
Vs8/8E/yFlZgY7EMSQg4FQ3BaBxDwTBq64rgd93eg0icVE5cTaRpGnRdh6qqhpdDRETGGS4A
kiRlfJJXlmXoahTHj7wFybcElXkuWMrK0dpwCfFoCIq7CFvW1s24u3jy/+fdxkSUTZHzFzDy
N38773zeT3wcOU88vvgNWkRpXQWUKS0exms/+SnW7X4aVYU+SBJQXlOH8hoAQuDA/tegrVkO
iyxP7WHoug5d12G1GjnHQES0MOKSBEQi886nCPHAj08ZF4A7t87n2kPouHIKJeseQ5k/B6qq
QrEoaLpyAUVVyyFFRgB7LhReQUpEDzhV0/H9o43Yf6oVwUgc65cW4XPPrUdp3v15LjOjAqBr
Mfzrl/8Upxpv3rp6x4pf+8M/wbrq/KTz+8trEegZQEPDAAAJ1bV1qKtfidbWFmiKC089sYv3
EBDRA00IgZfeacB33m6YmnbyWg9uDk3gLz+/FzmO+29vIaMCoEUD6Aq68Ld//w+QDYzbvsIy
+ArLZk2vrV+VyeKJiO47cU3HwdOts6Z3DQZwvqUPu1ZX3INWAbEbNxBtak76s4wKgGLLgVsK
4+zFS7DLACCjunY5vE7bXTSTUolcuoSxH/xo3vm8P/MhODesz0KLHn5CCETjGkLROOxWC1x2
C/dSH0DRllaMfuOb887nfnofcnbuvKtl6brARCSe9GeBcOyufvfdiFy8hNF/+1bSn2V2CEiP
Iz8vF8fePjz1az5YXMkCsEi0sXFEGxsNzPd40ukjExGcb+lHJKZiVXU+qgq9HMzm8V7DTXzz
zSvoGw0iN8eOFx+pxYd21EKR+Q6lB4keDBrqO87Nm5JOD8o2NLiLEVJsqAkPoTwymvTu2Xh3
NyKnz2ApQrgGx4yfWXQNZVdOY/zmFTg2bICtyvgl9Ist7QIQC08goiv44Ec/iemvAvD4chay
XbMIIdDYNYxXTrRgYDSMZWU+/Oyu5SjMdS3KskYmIojENPg9DjhtWblYal46gEuecrznq0FE
saI+2Ic9Q81w6cm3OgCguXsEf/7dExgcT9yBbbPI+PRTa/D81qWmKgKhaBwjE1G47Bb4cuxz
fvaWnlH81Q9PIa4l7kkZDkTwjTcvIzfHjic3VGerybSABIDGnGK8m1eLCcWOpaEB7B1qgkeL
psz02Tz4SuUuDNgSj7lRdA3PDDXg6cGGWUUgdqMD49/+Dj5sz8U/lO3AiNU1lXluuBHe/dcw
CiDP65lVAHRd4L2Gbrx5/gbCMRUblxXjhW3LsnLOIO2Rra/5LK4GctB09BUMT313Vnz887+K
ulLfwrZumqsdQ/jSt99HOJa4Maz55ggutvbjT39xN7w59gVbTiyu4auHLuPIpU5EYhqK/S58
5qk12FpXOmduNBjFycYejIeiqK/Mw6qq/AXdWhQATvhq8N3STdClxO9tcxXghjMP/6HzOKxi
9uO4VU3HPx24ODX4A0BM1fG1N65g8/ISlPgXt2jfL45e7sI33ryKofEwXA4L9m2sxiceXwmr
RUk6/5FLHVOD/yQhgMPnb5iqAISicZxu6kXfSBDVxbnYuKwo5Xd2v7vkKcNXy7dDkxPtb3fl
o9VViF/pOAKHPvtmUwHgh8XrpwZ/ANBkBQfzV2LVRC+qIiNJl1MZHcPvdbyFyzklCMtWLAsP
oSo6kvKZO0IIHDjThn8+cBH6rasqGzuHcf3mCH7v5x+BRVncPc60C0Dlut2oBPD0jo1QNW1q
umJZ3K3kHx1rnhr8J90cDuKti5340I7aBVvOD4834cDptql/9wwH8eUfn8WffXY3yguSP/Cu
azCA/+dbxzEwlhhoZVnC81uX4tP71kAxcpbcAFWS8UbBiqnBf1JDTglaXQWoD/bPygQjcbT0
jM6aHlM1NHUNP7AFYCIcQ99oCG6HFUW+uZ9C29Iziv/z8jnEVO1WNo4fH78Ov9uBD25Pvt5E
YlqK6ea5K31kIoI/fel9XL95e/3ZWleC3/m5rfesCMRaWzH411+GAHDFU4YjBXUYtzhRExrE
UwNXkBcLAQA8zz8Hz7PPzMgeKFg1NfhPanfm4Yq7FJvHO2ctSwC47iqcNV2TFbQ681MWAADw
alHsHL9h6DNF4xp+fLxpavCfdKqpF01dw1hVXZAyq+k6eoaDUDUdpXk5sFvTH4MzuwooHsKX
/uh3EZK9SPQ9Kz7167+JleX+TH6dIb0jwbSmZ+qdi7NXhmA0jlNNvSkLwFffuDw1+AOJXbrX
TrXikfpSrJ7jD5gOTZIxak1yuEuSMGRNPpBbFAlOmyXpCSj3A3q+5p1LnfjGm1cwGozCZlGw
a1U5PvfsOtitswel0e9+D2/1y4ips3/21rtX8GjjMSh+P3I/9MHbmW99G7U3J3BQ5AF3FJYV
g20Y/urXYCkogPfFFxb+wy0wPRLB6Hdemnc++7KlyHnssRnTfny8ecbgDyQGpXcudWHfxnuz
FyTicaj9/bjoKcfXC2qhBSUAEXTDjWbHCvxGz2HkaDHowdljwqAtyXX4koShZNMBSACcWhxx
efYQOdch13TFVA3DgeQ3nfWOBlMWgKHxMP7PT8/hascQdF2gNC8Hv/riRqyozJtzeT32XFzM
rYBN17BhrCOzAiC0GGyF9fjPv/MbWTuOXF3sRffQxOzpRd4FXc6du/7zTQcSh6fupOsC17qG
F6wAWHQNRdEAehy5M6ZLQqA0Oj5rfnV4GHJXF3Z4NbwenvmzcouKpWM3Eb7YD1tVFRRf7qz8
/ai1dxR//+qFqa35aFzD4QsdyPc68bE9K2bNH3zrLYRs1UB+/ayfRYdHMXH6IKyVlTMKQODQ
m1geCuHxonV4J285hCQBQmD1RC923zyJiYtx2JYtm1EAIpcuz/vIEjknB/ZlS2dNF0JgaDyC
vtEgCnJdKMp1LlifErEYJg4cnHc+/dFdswpAQ+fsdXpy+kIUAD0cRrT5+rzzWYoKYS0pmTHt
zcKVs7bm++xeXPBWYOfI7MswAaA8OoZW1x19UQiURsZSLvuxkRa8WrRmxrT82ARWTfTM226j
HFYLSvw5s8Y2SQKqCpOPbZou8JX9F3GxbWBqWvfQBP6/H57C//qPe+FKce7gorcC3654BFEl
8fO3CldkehmoG+5YL/7HX/zFrV9gwc99+nOoLVm8geSjj9Xjyo0hjAVvn7RZXu7H4+sW9oz6
1uUlOHi2fcY0iyJjw9KilJlcly3p4YHcBTw3oUDghf5L+GrFDqjTVv6tYzdQFR6eNX/k/AUM
f+Uf8bSkQCtchRO5SxCTLagL9uNn+85j/FListL8L/wn5OzYvmDtXEynmnqnBv/pjl3pTloA
AGBVoAdv59UlBvJpVk/cTLkcGcCH+y9i+1g7btpzkRcPoTo8DCXFQ8v7//wvgHkeWmhfuRLF
//U/z5im6wIvHbmGV062IqZqsFlkPLWxGr+wd9WiH/udj9eVfN31uhZmz1Ht7cXA//jT+dvx
oQ/C9/GPzZg2bEu+JzySYk8YAD7QdxF/V70bsWlb9KsnerAi2Jt0fgnAvqFGCAl417cMYcWG
peFBfLjvPNzawl3SabXI+MQTq/BXPzoNddpG5r4NS1BTkvyc6ngoikvtA7OmDwciaOgcwubl
JbN+FpUt+GnJ+qnBHwAmLI7MCkA8MoaOEQ2f/NRztx7hLKHI68zkVxlWVeTFn392N14/246B
sTCWlfrw9OYlcCzQFTraeADRhgZ82B1Dux7ANckNSBIsuoaPFqoo62pGqAuwVlTAWj7zprYX
H1mGfz54aca0Yp8LW+tm/yFCp89g8K//17ztyfvFz8D95N6pf0sA1kz04Avtb+GkrxoR2Yq6
YD82jXWkHJgAwCY0fLD/El7svwyBRCG519f+9PzBHyLe2TXnPIrfh/L//eUZ04Se/HPeefx0
uuWhfjw/cBn7C1cnzp8IgTUTN/HUYEPKDJD4vsui4yhLsneVjADQ7irAq2Ub0ePwIT8awNN9
l7F6vCvl9/3+tR788PjtG3Riqo5XT7WhstCLJzdUGVruYnluSw0utPZDm/ad260Kntq4ZM6c
EAIdAwEMjoVRXexFvscx5x6NAHDGX4PDRaswZnWhKjSID9w8h7LI7HNXkyrDI2jw3DHeCIGK
OY7L14SH8Nuth/Cef+mtq4AGsW2sPenFE5MUCDwz2ICnBhshIEGBvuB9R5Ik7FhZhoLcx/D2
hQ6EYyo2LCvGrlXlKc8fCoGUe5wpugjGLQ6M2GYXyIxGT4stByWFefD682CVAECC1bK4WyyS
JKHYn4N//+TqeeeN9/Zh9FvJb3yYzvXINuTs2pXIdHdj8K/+GgDwywA6HX4ELA5URkbgaYhg
6O1EJvfffRS5H/6ZGb9n8pLKV060YDwUxaqqAnzmqTXJt6KEPu/WYmK22SumBKAqMoKq3tQr
ejISMGeRyDpVm/87SPLzzctL8KP3rs/YUgKA7StSX6ElAXhqsAHbRtvR5fDBHw+hLDq24B25
3+7FV5buRVxJdKmbrjx8o3oXPtv2Duonkm9lnmhMfijhxLWee14ANtUW47d+diu+d/Qa+kaC
WFKci0/tW43SvNRb2eGYir/56XmcbEp8XlmS8HOPLsdHdi1PWQTO+arxUuX2qT20Zk8p/mGZ
H7/ZdAC+eChp5sXei+hw5iGo2BPHSoTAmkA3VgdS79VJAEpiAXy474LBb+B2LtF3Fq//SJKE
uvI81JXPffx+Um6ODSur8nGhdeZegNdlw8oU5wDsugq7piJsmbkHl+GzgKKw6BF8/V/+eerX
fPyXfg11ZYt3GWg69GAQ4ZOn5p3PWjb78RTA7YHWKElKXPXz/NbZx3gfVKGoisbOYcRUDfUV
/nmvnc+G5eV+fPbpNfjm4asIRVUosoRt9aX4+cdmH+OfTgLgU8PwTYTnnO9uvJ9fOzX4T9Jk
BccL6lIWADnFFp58H9yfMbllumNl8j6SzMvvt0wN/kBiz+z7R5tQV+bH+qWzr6gBgHcL6mcd
ngtaHDjrW4K9A1eTZsqiY/jtljdwwleDgMWBJeEhbBzrgGWOrfmHiSLL+OXnN+B//vA0WnpG
IYRAnteB3/jgppQXd3jUCLaOtuFIft3UxQ2SEOkXgJHuZvSpPvynP/ivd/cp6L7V3jeOv/rx
WfSNJrbAXHYLPv/sWjxSX3LPi8Azm2uwfUUZugYD8LrsqChw3/M2AcCEJfkx82CK6QCwc2UZ
jl3txvS9eenW9AfRmet9s6YJAGdb+lIWgEy+NwDwx0N4duBK2m18WBT5XPjvn34UN/rHEVc1
VBfnznnDqgTghd4LcKsRnPLXwKZr2DXUnH4B6G+5iDPhGiyvmLmrIcvyfdER6e7ENR3//Prl
qcEfSOwNfOXAJayqykt5cjCbcnPsC3qCfSEsDQ7gnL9m1vSa4OyTdZM21xbj43tW4OX3WxCM
xuG0WfDclhrsWvVgFoBUJ67nOqG9NDiAYfvMy6slIbAklPp7M7PYjQ5Er97eM5q8NEW9DASm
zefctAmW4pkXrliFjn0DDdg3cPv8VwaHgAR+9LUv48Sr0y9RsuLzv/tHWDPPNah0/xsPRtHW
N/vEZyiqoql7FFuWF9+DVt3/tgy34aqnHA3esqnj0tWhQeweSH2yWZYl/MyOWjyxrhLDgQh8
bgf87nt7qE1oGtTBwXnnk51OKN6ZlynuXl2OlpujM46WWxV5zj2ap3svodOVhz57LiBJkITA
ppE2rBrrzvQjPNSi1xox8rWvzzufUlg4qwAkk0EBkPDCxz6PjzyxdsZUp+vBvKuUZlJkGRZF
QpKrLZPebEUJVqHhUzeO4pqnDD2O3MT14uPdSR8zMJ0kSfC5HfC5HXPOly3a8Ah6vvCb886X
s3cv8j//uRnT9m2sxvBEFIfO30AooiLP48DH99Rj2RyPiMmLB/Fr1w/hircCY1YnKsLDWB7o
vb8uWniIpV0AfKU1WF1YCI9n5m5baGICUo77vnuzlwAwbnUhbLEhNxaEU1u4u/julgAwYnMj
LivwxYKwzzNYZIM3x4bNtcU4dnXmFRVl+TmoW8Q7vR8GVqFjzXgX1ozPfYnrw8qiyPj4nno8
v7UGoWgcvhy7oQcpurQYtqa4gYsWV9oFoHj5JiQ7CNBw/jTqtz8O9/3x4EwAQFxSsL9qC87n
L0VMscAbC+OZzjNYP9w2f3iRRRQrfly9Aw2+CmiygrxoAC/eOIm68dSXsmWDLEn4zL5VkCXg
dHM/VF3H8lIf/sMza7gHQPOSJAm+HDt899k5GkruPhquF967Jatwoqh+6rKnMXsOflSzA0WR
UZSG0ruWfiEJAAcrNuFi/u2ThoOOXHxv6WP4tauvwBdb2OcbpcvjtOFXXliPiXAcuhBwO6z3
/M5UIlp4D3WvvliwdNYDveKKFVd99/YmGwEJF/NmXzEStDrQ7L0/rgCRJQlelw2+HDsHf6KH
1EO9B6BJyQeuVNOzRczRBp2X0ibV83//PtT+uS8NtBQVovTP/yxLLaJJ8Z4e9P7hH887n/up
ffB/4uNZaBEZlVEBUGMBvPv+FTy+O/EQsbarF5FXsxLO++wQ8cqRDrxbOvNpfrKuo37s3p6k
kyGwYrQTF/Nn3jls0+JYNr5wTxpMV/jCRQSPHJl3Pu+LL8JWs2TR2zOdiEQhwnPfySsiyR+r
S4tM1+f92wAA4vfPBRiUkHYB0HUNkdAo3n33FHZu3wQIHUdf+xGWf+iXUXOfbbzu7b6AIYcX
jb4KCEiw6hqe7jqLqomFuclEGxlB5Gry29Wnsy2pmfEAOQnAix0nMW7LwQ13EQQApxbDB2+c
QH40kPL3LDa1pwehY8fnnS9n106gZsmit4eIFlfaBaC36TS+/C8vobG5E1/8YmJrtbB6FT6y
JPmt3veSXVfxyea30Of0IWB1oiQ8Ak984bYSYx0dGPrffzPvfL5//wuzniDqVqP4XOMB9Ljy
EFbsKAsNwbWAj5m9F4QQiKk6BBLvHr4fnmlDRKmlXQDKVjyCL31pLS5dvYEN61cCSDy5crEe
w6RNTCD03vvzzmerroK9rm7WdAlASXgUJeHUj5e9V2QA5aHZz/J/EAUjcXzv+HWcuT4AVdex
qjIPn9xTh7z75AYnIpot46eBnjx2FGVLquFGEN/+169i88/8IjYsWZi3X81Y1ugoRv75X+ad
z/P8c0kLAC0+XQh8851rONl8+73E59sGMRqM4g8/smXB3otMRAsrowJgtfvw1J51+NIf/DZC
qsBHP/vrWFudv9BtowfEyEQUF9pnv0KwvT+A9v5xLEvxpjgdEno8Bej2FCEnHsay4U447qM7
tReLEAKBn74y73yWoiK4tj+ShRaRWWW4BxDBO4cOo7R+Eypywjh78gS2rKuDf4FeF0cPFlXT
Z72kZVI4yasygcTgf7hmK06Ur4MuJy6JLQwO42OXD8AXnf3u54eKEBj91rfnnc2xYX3SAiCE
QDCqIhiJI8dhRY7dMu9bt/rc+Xi/Yh2GnbkoCg5jR+cF5IUX/sU49GDJrADoGtbv+RA+tX4V
hK6j7coZjAYiLAAm5c+xo8TvQvfQzDuYnTYLlhQlf7F1R27JjMEfAAZy8vBmzSP4ucY3F7W9
DzJdFzh0sQuvX+hCIByD12nDMxsrsXdtecqT7n05+fi3tc8jbEu8RvGmtwgteRX49LmXH/5i
ex+LtbUhZODFVa4d22GrWpybVzN7JaTVhdjgNfz+7/wjCut3okwaxL6PbVjottEDwmZV8Mnd
dfjK61cwGkxcyeSwKvjUE/VwO6xJMx25JTMG/0ntvvvjTuj71fn2Qfzw/dapd7+OhWL4/vEW
FHqdWL8k+WHYkxVrpgb/SQG7G2fLVmFv28nFbjKlELvRgfEf/Xje+ayVlfdXAYhHRvHqkav4
7d/8ZXz9h++jwCfQ2juCYg+fFW9W9eV+/JePbkVD1whUXUd9mR8F3tRXADnV5Je8OtXoYjXx
oXCyuX/Wi791AZxs7ktZAEYcyffCRpzJp5N5ZPRMBFmxA9FhXGvpwPjIAE42dA99+pAAACAA
SURBVKDQx/cBmF1ujh3b60vw6MoyFOY65zwuXT/YDnf0jofeCYHNN+e/sc7MVC35c/JTTQeA
4mDyS42LJmafuCdzyagAKDYXfv1XP4+LZ85BkVXs/rlPY1kBCwAZ540F8bErB1E1ehOKrsIT
ncCTbSew9aZ53/NqxLolyd+6ty7F1j8AbO+6iNzIzDvMC4IjLLaU/iGgeDSE4dEA4PDj5z/5
mVtTJcRUnc+Lp7SUTgziUxdfgSbJkCAgC8GrUuaxs74EHQMTOHq1BwKJGx33rC7DI8tTv/4v
NxLAZ879BGdLV05dBbSppwEOHm4zvbQLwNCNBvzTd/dP/VuNhXHi2En80d98A4+uKFnQxtH9
L3TqNIJHj845j2x3IP/XfiXpzyQAFrFY95E/fCyKjE/uXo596yvQPxpGsc+JonkOt0kAPLEQ
9tw4k72G0gMh7QJQUrcZf/xHmxCLhnD0jVfw5vGL+JU/+G/YNscWCCCgqSriqgaL1QqLogAQ
iMdi0IUEm816T1+ETZlTe3oQnudSNsnlAm8TXDiSJKHE50KJz3Wvm0IPuLQLgBoN4a39P8Hb
p69ix94X8MX//vOwzfPCkPGBblxp6YHX40RvTx+2ProH4d5mNHSNw2uLQ86txvr6Su7+ExFl
UdoFoO3M6/if//JD7HhkEy6ffBuXT74NwIKPfOaXUJviln+XvwTbt1dAEgL6aB8GxsNov9aO
XU8+C4cFOLD/ANbVVQBI3OU4+b9CCOh3XvOWggCg6/qM35FexthhiESb0lzO3WaweMsBsvN5
Juc3SoiZGSPfwfS/5+S/DSwp7bZllpnWNqN/m+nfgaYheGj+G+SU4mI4NqxPxNNoY7r9IFvr
zfSMnq3+Znj8yGQ5GYxTM9pmKHLH+JFa2gWgeuNT+Ke/23rHVAlulwJdAMme+2WxWCB0DY0X
T6Mn7sLeAgeadAV2S2JmWQZ0HZAlAVVNPDpAVVWoqgpZNfZsGF3TEIvFbmUzySR/ZMGdtHuS
0dLOaJqxjKqqWclMzg8YX/GnZwyN5iL9jBBiZsYAPaOMfjtjtGhOy4hoFCNf+/q8GfuWzZBX
3XpKr8EXsOj67eXoGWS0uNF1+nZGNZzR7i6zmH1UndbfDGfUu8toxjKqwUzaBcDmzEF5+exL
Ps+8+zbqtz8Od5LfqGsxHD10EN7qNdi3pwaypEORBDQBWCRg8nIGWZZhs91+nIQQYsa/56Io
ChyOxI1HUWv6GRjMWCyWqYywJr/Lda6MnkFGsxj7M03PqIYz1qlM3GDGar2diRnMTH3PgKHz
PZK0EJn52yVJ8oyMEfJdZoxumcvy7YzR7fLpGc1gkZqeUW12g5nbfSduM7pO387EDGdur9NS
Bpms9VGjGeu0Pmo4c5d9VEmdyco7gXuaL8BSugYbV0y+CF1Gic+OG70jKHVGITnzoPAkMBFR
VmWlAChOHyyBYZw9OwJAwtL6VVizdRdamhrRPKjgsZ1bDG2tERHRwslKASipXo6S6tnTl69c
m43FExFREhk9CiKZ2tXr4Fiw30ZERIstzT0Agde+9fd441TTHdOt+Nxv/T5W+xesXUREtMjS
PgT07L/7PJ7+6OzL2GSFzwEiInqQpFkAJMiKAkkIXDz2Ol4+/D40AUAo+MR//HXUlfoWpZFE
RLTwMjpqr0VG8W8/eRNrq/xYtet5lOV74PPwuSRERA+SjAqAgIArtxC1S0oQDMdRYFPR2ju6
0G0jIqJFlFEBsDhysWfbelRt2ouh86/hwrAF9WU8A0xE9CDJ6D4AIQSWLa/F4OA4fvaTnwUg
wcZzwERED5SMCoCuhnF4/8sYjQGAwJVLDfjdL/0l6kqMPduCiIjuvYwKgMXmwWd+9f+a+vcr
X/87xFS+1YmI6EGSUQFQo+P417//h6k9gJamVnzhqU8sbMuIiGhRZVQAZMWOnXufhdd367p/
2YKSIs9CtouIiBZZRlcBqdFRvHrwOCorK1FZWYlr7/wUZ9sHF7ptRES0iNLeA+htOoW//cYP
cKWhHX/yJ70QQkdH5yC++OwvLEb7iIhokaRdAAqXrsdvfqEE3//JUXzsox8AIMFmt8Nm8O02
RER0f0j7EJBiscHnL8GK5VVwuj3weHJw5vjbGAml945UIiK6tzI6BxCPjuLtd09BkQBAwlh7
Ixq7Rxa2ZUREtKgyKgBWmxeWUCd+8voRnH7vbRy62IWaktyFbhsRES2ijAqAZLHjC7/z+1AH
23C2oQO/8lu/gxKPfaHbRkREiyjjlzg6cwvx7PMvYn1tKX789X/E1S4eAiIiepCkfRVQNDiG
Y+8cxvETpzE4HsJA3zB+4w//C+rK+DIYIqIHSdp7ADfOvoF/efk97P3QJ/D//uVfYNvKZaiv
WwarwjfCExE9SNLeA1iy5Rn8UtiOo699Dz/41gT6e4ews6UdG+urYJFZBIiIHhRpFwCb04M9
T38Au596EaHAKK5ePIujL7+EnE9+Hqsq+FIYIqIHRUYPgwMASZKQ4/Vj66NPYuuuvRAL2Soi
Ilp0GReAGSQJ0oL8IiIiyhYetCciMikWACIik2IBICIyKRYAIiKTYgEgIjIpFgAiIpNiASAi
MikWACIik2IBICIyqYW5E9gAIXQMDQzBX1QIBUAsHEBHZw90AI4cHyrLi3g3MRFRFmVlD0AN
jeLlH34f33npZURvTeu6dgVRRy5KS0tRkOfNRjOIiGia7OwByAp2P/NBnHj9talJQxMh1Nbl
weOyTk3TdR1CJB4rp2kaNE2DqmqGFqHrAqqqTmUNZUQGGV2fltGzk9Gzk9ENZjQt/czk/ACm
/sZzEWIhMvO3S0xbB4y624ww+J1Nz+gGlzc9o2WS0Yxm9LvsO9nJ6Pp9lpned4x+Hk2bljHY
r6dn5ljfslIALA4P7nxQdEVlFdoaL+FaJATJWYBtG1YASNbRjT5nVEzLGsyIByRjZCTLMCOm
ZYwMsneTSddDmzG+Smc9Y/hjZZJB+hnxMGeMRTLMCEOZrJ0DuFNJ1TKUVkuAEDiw/zVo6+th
kWXIt14qo+s6FEWBxWKsibIsw2pN7E3oSvoZzWhGUaYyqqKknYlnkIllkFEMZpQMMhZL+pnJ
+YHEo8TnI0kLkZm/XZIkzcgYcbcZo3sAknw7Y3RrcXpGsxpbp6dnJIP9TZrWd2AxuH5OywiD
GWV6v84gY7SPTs8Y7aPTM0b7qKLId9lHjR21VxTL7cwcL+rKSgHQ1DhicRWqqiISDsNms+P6
1QvIL18KKToK2emHYqS3EhHRgsnKSeBwYBRtbW1YumYNetvaMB6MoG7lakwM92E0IuPJPTsM
ba0REdHCycoegNtfiFX+wlnTa2rrsrF4IiJKgjeCERGZFAsAEZFJsQAQEZkUCwARkUmxABAR
mRQLABGRSbEAEBGZFAsAEZFJsQAQEZkUCwARkUmxABARmRQLABGRSbEAEBGZFAsAEZFJsQAQ
EZkUCwARkUmxABARmRQLABGRSbEAEBGZFAsAEZFJsQAQEZkUCwARkUmxABARmRQLABGRSbEA
EBGZFAsAEZFJsQAQEZkUCwARkUmxABARmRQLABGRSbEAEBGZFAsAEZFJsQAQEZkUCwARkUll
rQAIIRCNRCFuT0E0HEIwFIEQYo4kEREtBks2FhIPDuNS0w1cPH0JH/2lT8EFoL3pMgYCGhwW
AdXixoZVyyFJ2WgNEREBWSoAii0Hq9esQ39b260pOppaurH32WdhkYDXD+yHvrIWkhDQNA0A
oKoqVFWFHI8bWoam6YjFYreyi5hR1WkZNTsZ7f7KxOMqlDQzk8sAYGiPT4iFyMzfLiHEjIwR
mWR0cXtdE7puLKPfzugGl3e3GS1uNKPdXm8M99HbmXjc4Pp5lxnD/S1LGVXNJHO7j2qqln5G
S53JSgGQrXbYZ0zRoUGBMrnFLyU6lSxLUBQFQKLRsixDlhVjy5iezSBjfDlydjLK3WaMHd3L
JKMoyu2MZDwzxeCe3l1njJCyk5Gk2+saDH7P0zOyYqyrTs9IBts4o22GM7fXG5FBRlcMfgfT
+o5iMCPfi4zRvnOXGcN91GAmKwVgNgU2WUVME7ArgNABSZYgSYn/ANwa/GXDf4wZnSWTDmY0
M+OLNTYqZZSZ1llkg8fGZmaMfgfpZ2YWzvQLgGRgNJekBcgY+NokSOkP5neZMboHMH39NDxg
ZjSYT2ubwY2NGW0zurExYyPNYOYu+7VkuB/cZcbw+JFJRp6WSX/MkeboCFkpAKHxEfQOjmBk
dBQ3WltRVlyGVcurcPrsBfisMRRUrzQ8yBER0cLISgGw2h3w+/149sMfBgDYrRbkLl0FX/EE
4roMj9tldA+fiIgWSJYKgBN+u3PWdGeOB7OnEhFRNvBGMCIik2IBICIyKRYAIiKTYgEgIjIp
FgAiIpNiASAiMikWACIik2IBICIyKRYAIiKTYgEgIjIpFgAiIpNiASAiMikWACIik2IBICIy
KRYAIiKTYgEgIjIpFgAiIpNiASAiMikWACIik2IBICIyKRYAIiKTYgEgIjIpFgAiIpNiASAi
MikWACIik2IBICIyKRYAIiKTYgEgIjIpFgAiIpNiASAiMikWACIik2IBICIyKRYAIiKTYgEg
IjIpy71acCwcQEdnD3QAjhwfKsuLIN2rxhARmdA9KwBd164gmleDKr8LisV6r5pBRGRa96wA
DE2EUFuXB4/r9uCv6zqEEAAATdOgaRpUVTP0+3RdQFXVqayhjMggo+vTMnp2Mnp2MrrBjKal
n5mcH8DU33guQixEZv52iWnrgFF3mxEGv7PpGd3g8qZntEwymtGMfpd9JzsZXb/PMtP7jtHP
o2nTMgb79fTMHOvbPSsAFZVVaGu8hGuRECRXAbatXwEgWUc30ItvzXc7azAjHpCMkZEsw4yY
ljEyyN5NJl0Pbcb4Kp31jOGPlUkG6WfEw5wxFskwIwxl7lkBKKlahtJqCRACB/a/Bm1dPSyy
DFlOnJfWdR2KosBiMdZEWZZhtSb2JnQl/YxmNKMoUxlVUdLOxDPIxDLIKAYzSgYZiyX9zOT8
ACBJ85/tkaSFyMzfLkmSZmSMuNuM0T0ASb6dMbq1OD2jWY2t09MzksH+Jk3rO7AYXD+nZYTB
jDK9X2eQMdpHp2eM9tHpGaN9VFHku+yjxq7bURTL7YycOnPPCsC1y+eRX74UUnQUstMPxUhv
JSKiBXPPLgOtW7kaE8N9GI3IeHLPDkNba0REtHDu2R6AbLGhprbuXi2eiMj0eCMYEZFJsQAQ
EZkUCwARkUmxABARmRQLABGRSbEAEBGZFAsAEZFJsQAQEZkUCwARkUmxABARmRQLABGRSbEA
EBGZFAsAEZFJsQAQEZkUCwARkUmxABARmRQLABGRSbEAEBGZFAsAEZFJsQAQEZkUCwARkUmx
ABARmRQLABGRSbEAEBGZFAsAEZFJsQAQEZkUCwARkUmxABARmRQLABGRSbEAEBGZFAsAEZFJ
sQAQEZkUCwARkUmxABARmRQLABGRSbEAEBGZlCSEEHdO7OrqQiwWuxftmSKEgK7rkDUNsRsd
886v+H2wFBQAAPRIBPHOrvkzeX5Y8vMTmXAY8a7ueTOW/DwoeXmJTCiEePfN+TOFBVB8vkRm
YgLxnt75M0WFUHJzAQBaIAC1t2/+THERFK83kRkfh9rXP2/GWloC2e1OZEZHoQ4Mzp8pK4Wc
k5PIjIxAHRyac35JkWFbunTq37GODojo3OuXZFFgq6m5nWm/ARGPz52xWmFbUn0709YGoWpz
Z+w22KqqbmdaWyE0fc6M7LDDWlk59e/o9RZgdjeamXE6Ya0oT/xDiERmHnKOC9ayskRE1xFr
aZ0/486BtbQ0kdE0xFrb5s0oHg8sJcWJTDyOWPuN+TO5XliKihKZWMxYH/XlwlJYmMhEo4h1
dM6fyVYfLciH4vcnMsEg4jd75s9M66N6IID4YvXRkmLIHk8iMzYGtX9g/ozBPpq0ANwPhBAQ
QkCWje+kqKoKWZbTysTjcSiKknbGYrFAkqRFzcRiMVit1rQzNpvN8PzZygghoKoqrFar4Yyu
69A0Le2MruuwWCz3XUbTNAgh0s4AgKIoi5pRVRWSJKWdSbe/PWx99EHv1/ftIaDJApBuJpPl
ZJK5n9vGTPp/m2xkMpGtdS0TbFtiQyBd91M/uG8LABERLS7j+6JZJklSWrtIACDLctoZRVGy
lklXOocKHoRMut9BuockJjPpHCoAMltvMm1bJut0urKVyaQfZPJdZ7Nfp+t+7m9GMsoXv/jF
L6b9m7MgWWcJjPTh/ffew9WrjWhp74DF6YXP45r6uZEVRY0G0NU7ilyvO0VG4PLp93DhWjtK
yytgVWTEwwEMjIbhznEkzQgh0HjhJK53j6I4PwfHjxzBzeEQykqLIEvG2tZ5/Rqs3gJYp/XD
OzOhwBiE1QFFAno7mnD02EkImwd5PjekaZnp4pEQInEBm1XGtQuncKmxGeMRoDjfB0lKnulq
vozW/gkU5vsgp2jznRmhxXD2xLto65uAzxbHO0eOI6jbUZyfOEmWbGAWWgwNF8/hxMmTuNZy
A4rdjbxc99TPk2W0WBjnT5/A2YuXcf16CwJRHUWF+VPfs7ECoKO1pR3+PP9U5s6/zUBnM945
dgoufxG8LjsAHZ2d3cjN9abICAx0t+Lk2avILyrC9YuncOnaDRSWlsJuUVIuZ7rgcC/6Axq8
t9azZBlNjSIYjsNusyIyMYwjb7+DntEIykoKp/5Ws5ajaxgdD8HhsGG4pw3HT51HV88QyspL
oaTIRMYH8P6ZK8gvKoLNknxgTPZ5Oq9fxvtnrqK4pBCnjh1BS/cQqirL5+wHobEhnHz/OM6c
u4DewVH48gvhtN0evJJlxgZv4vjx99DQ0Ii2G12wuX3IdTvnzNwpEhhG32gE3lu52f1aw4UT
7+JqWw9Ky8pgUSRExocxEtaQ47Alz+gaLp89gY6BIAq8Vhw7chQDgThKiwtm9Le52tbefA0u
fwGUabPcuU4Hx8cgWx2QJaCr5Qreff8slBwffB5XyrEgGppAXMiQ1BCOHjmKtvaO+7cA3EkN
DeG9s83Ysu0R1C2vxZKqCtxsOo+QJR9+tz1pJh4O4HpLKwYGBjE4mPivv+8mQqoNJYW+pJlg
73X06oVYW+3BoSNnUV+3FPHwGPpGIijI8ybNhAeuoyvixxK/jkNvncDGRx+HMzaIgMhBbk7y
tnVffR8/evMEum+0obm5GQ1Xr6DzZh/ySirgdiQ/6dlzvQHwl8KmBnCuoROP7tqOrqZLcOSV
wmlL3klvXr8C3VMMS3gA7SMCO7ZuxFh3K5TcQjityTP93R1QoeL0+ycxHgNKCvNTFoJJnc2X
YMlfhnJ3DO9e6MCTe/fgZtMV5FVWwZoieua9d+ApX47VNX6otlJYgp24MRxHWaE/xVIETh47
gvK6DVi7qh5La5ZAjo2ioX0AFaWFKTI62q83oadvYGodGBwcxM2+ESyprkiR0XDuYiN27dyK
9w4fQn71MrisQFtrB0pKi5O3TNdw7lIjNm9YhePvHIajsBYb6ovR2NKHspL8pJl4ZBTf/Oo3
0d3Tg+bmZly71oimlnbIDu9U4bxTLDiCzt5xFOTl4uypk1i9ZSdyMYKWfg0lBZ6kmUhgEO39
ARTle3D+wlU8svNRFHt0NHUEUFKYfDnh0UGMRVQ0XTqLtu4BFBaXwp5ifZn6PIE+XO0K4ZGN
dTj8+iFseHQvShxBtA1JKPK7kma08AjeOXEJG7duhxSLYsWq5bh44jjcJdVwpVin44FeHL/Y
ge07HsHy2lpUVZai/epZCFchvK7kJz2jwTE0t7TNWAf6bnZBtXpR6HcnzYx1NmDMUY3aAhlH
TzWidlkVIqMDGI7KyPMm/zwj3dcwppSg0DqBt9+/hG27H4c+2g3dlYcce/It8utnj2D/0bPo
bG9Fc3Mzrl65gq6efhRVVKfso51NDbDnl0KJDuFC6zAe27kV1y+eRV5FFWxy8g7X3nQFDn8J
OhouoXL1ZqxYVvngnAMIj42hbFk9PDlO2Gw22B1OrFyzEmNDc1yCqEfxxqG3EY5EEY1O/hfD
XKdG4pEo8grz4SuswpZaL46daZq3bRMjAZQvqUBx5TLkF+SjKNeF/Px8RMPhlJnS+s3YuLwc
/sIyPPXsc9ixdTP2PfscinOdKTOTosEAisur4HA4sKS8GBPh1JdUKoqEcDgKXdPgy/NDURQ4
bBaoc528khTU1K/Hix94EWVuHft/+mMcPXkJqp76m4vEdJQWF6CwrBx+jwd2mxUlXhcm1FQJ
FYozHzXlRXDnlwDhAOrWbYMUHpnjk2uwOP0oLfTBZrPBZrejtLoWFi319wxIOH30EPrGQtPW
gQi0OT4LIODK8cDh8mDfvsfw7uG3EZ/nXJ/QY/B48+H25qGiwIeKJVVw5fqhaNGUGYs9F/v2
PooctxfbH9uLp/Y8ip2792Lt8sqUmdtUWJ0++D0uFFcvgwiOpZxTlhVEbq2LTrcHdqsCp8sF
NT7XpbgS/EUVeOrZF/DIulqcOPIG9r9+GGOh1JnwRBDF5eVwuX0oKCpEntsBX0k5tInUbQsM
9mH5ui3weVwocCiIO/KwY+dm9HakvnRzYmgIS1auQY7TAZvNBoczB/X1yzA+Op7602hhHDz0
zrR1IDEWzCUWiyOvMA+F5bVYUSzh9JX2OecHgFAgjLKKElQsq0Oe3488twMF/lyE51hWzdpt
WLWkGPklVXj6ueexfctmPPPcs8hzzX/1W3B0FBVLlsDhcKCmOB/j0dSXPcvQEY7GAasD3hwH
LFb7/XsO4E7u4koMvXUYh6474fO4EI8EMTQexeP79qXMWHMK8PjmOthKalBXmtjSiYVG0NKZ
ekXJrazFheMXUPPoNlTUb8bQ+2/j5f1nsWLTYykzeeWlONd2A+VrqrFhw1pIAIaHhuAurk+Z