-
Notifications
You must be signed in to change notification settings - Fork 34
/
AFRCNN(sum).py
413 lines (354 loc) · 14 KB
/
AFRCNN(sum).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
'''
Author: Kai Li
Date: 2020-08-09 17:32:53
LastEditTime: 2020-10-23 10:57:11
FilePath: /Conv_TasNet_asteroid/model/sudormrf_icnn_concat_recurrent.py
'''
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
class _LayerNorm(nn.Module):
"""Layer Normalization base class."""
def __init__(self, channel_size):
super(_LayerNorm, self).__init__()
self.channel_size = channel_size
self.gamma = nn.Parameter(torch.ones(channel_size),
requires_grad=True)
self.beta = nn.Parameter(torch.zeros(channel_size),
requires_grad=True)
def apply_gain_and_bias(self, normed_x):
""" Assumes input of size `[batch, chanel, *]`. """
return (self.gamma * normed_x.transpose(1, -1) +
self.beta).transpose(1, -1)
class GlobLN(_LayerNorm):
"""Global Layer Normalization (globLN)."""
def forward(self, x):
""" Applies forward pass.
Works for any input size > 2D.
Args:
x (:class:`torch.Tensor`): Shape `[batch, chan, *]`
Returns:
:class:`torch.Tensor`: gLN_x `[batch, chan, *]`
"""
dims = list(range(1, len(x.shape)))
mean = x.mean(dim=dims, keepdim=True)
var = torch.pow(x - mean, 2).mean(dim=dims, keepdim=True)
return self.apply_gain_and_bias((x - mean) / (var + 1e-8).sqrt())
class ConvNormAct(nn.Module):
'''
This class defines the convolution layer with normalization and a PReLU
activation
'''
def __init__(self, nIn, nOut, kSize, stride=1, groups=1):
'''
:param nIn: number of input channels
:param nOut: number of output channels
:param kSize: kernel size
:param stride: stride rate for down-sampling. Default is 1
'''
super().__init__()
padding = int((kSize - 1) / 2)
self.conv = nn.Conv1d(nIn, nOut, kSize, stride=stride, padding=padding,
bias=True, groups=groups)
self.norm = GlobLN(nOut)
self.act = nn.PReLU()
def forward(self, input):
output = self.conv(input)
output = self.norm(output)
return self.act(output)
class ConvNorm(nn.Module):
'''
This class defines the convolution layer with normalization and PReLU activation
'''
def __init__(self, nIn, nOut, kSize, stride=1, groups=1):
'''
:param nIn: number of input channels
:param nOut: number of output channels
:param kSize: kernel size
:param stride: stride rate for down-sampling. Default is 1
'''
super().__init__()
padding = int((kSize - 1) / 2)
self.conv = nn.Conv1d(nIn, nOut, kSize, stride=stride, padding=padding,
bias=True, groups=groups)
self.norm = GlobLN(nOut)
def forward(self, input):
output = self.conv(input)
return self.norm(output)
class NormAct(nn.Module):
'''
This class defines a normalization and PReLU activation
'''
def __init__(self, nOut):
'''
:param nOut: number of output channels
'''
super().__init__()
# self.norm = nn.GroupNorm(1, nOut, eps=1e-08)
self.norm = GlobLN(nOut)
self.act = nn.PReLU()
def forward(self, input):
output = self.norm(input)
return self.act(output)
class DilatedConv(nn.Module):
'''
This class defines the dilated convolution.
'''
def __init__(self, nIn, nOut, kSize, stride=1, d=1, groups=1):
'''
:param nIn: number of input channels
:param nOut: number of output channels
:param kSize: kernel size
:param stride: optional stride rate for down-sampling
:param d: optional dilation rate
'''
super().__init__()
self.conv = nn.Conv1d(nIn, nOut, kSize, stride=stride, dilation=d,
padding=((kSize - 1) // 2) * d, groups=groups)
def forward(self, input):
return self.conv(input)
class DilatedConvNorm(nn.Module):
'''
This class defines the dilated convolution with normalized output.
'''
def __init__(self, nIn, nOut, kSize, stride=1, d=1, groups=1):
'''
:param nIn: number of input channels
:param nOut: number of output channels
:param kSize: kernel size
:param stride: optional stride rate for down-sampling
:param d: optional dilation rate
'''
super().__init__()
self.conv = nn.Conv1d(nIn, nOut, kSize, stride=stride, dilation=d,
padding=((kSize - 1) // 2) * d, groups=groups)
# self.norm = nn.GroupNorm(1, nOut, eps=1e-08)
self.norm = GlobLN(nOut)
def forward(self, input):
output = self.conv(input)
return self.norm(output)
class Block(nn.Module):
def __init__(self,
out_channels=128,
in_channels=512,
upsampling_depth=4):
super().__init__()
self.proj_1x1 = ConvNormAct(out_channels, in_channels, 1,
stride=1, groups=1)
self.depth = upsampling_depth
self.spp_dw = nn.ModuleList([])
self.spp_dw.append(DilatedConvNorm(in_channels, in_channels, kSize=5,
stride=1, groups=in_channels, d=1))
# ----------Down Sample Layer----------
for i in range(1, upsampling_depth):
self.spp_dw.append(DilatedConvNorm(in_channels, in_channels,
kSize=5,
stride=2,
groups=in_channels, d=1))
# ----------Fusion Layer----------
self.fuse_layers = nn.ModuleList([])
for i in range(upsampling_depth):
fuse_layer = nn.ModuleList([])
for j in range(upsampling_depth):
if i == j:
fuse_layer.append(None)
elif j-i == 1:
fuse_layer.append(None)
elif i-j == 1:
fuse_layer.append(DilatedConvNorm(in_channels, in_channels,
kSize=5,
stride=2,
groups=in_channels, d=1))
self.fuse_layers.append(fuse_layer)
self.concat_layer = nn.ModuleList([])
# ----------Concat Layer----------
for i in range(upsampling_depth):
if i == 0 or i == upsampling_depth-1:
self.concat_layer.append(NormAct(in_channels))
else:
self.concat_layer.append(NormAct(in_channels))
self.last_layer = nn.Sequential(
ConvNormAct(in_channels*upsampling_depth, in_channels, 1, 1)
)
self.res_conv = nn.Conv1d(in_channels, out_channels, 1)
# ----------parameters-------------
self.depth = upsampling_depth
def forward(self, x):
'''
:param x: input feature map
:return: transformed feature map
'''
residual = x.clone()
# Reduce --> project high-dimensional feature maps to low-dimensional space
output1 = self.proj_1x1(x)
output = [self.spp_dw[0](output1)]
for k in range(1, self.depth):
out_k = self.spp_dw[k](output[-1])
output.append(out_k)
x_fuse = []
for i in range(len(self.fuse_layers)):
wav_length = output[i].shape[-1]
y1 = self.fuse_layers[i][0](output[i-1]) if i-1 >= 0 else torch.zeros(output[i].shape, requires_grad=True).to(output1.device)
y2 = output[i]
y3 = F.interpolate(output[i+1], size=wav_length, mode='nearest') if i+1 < self.depth else torch.zeros(output[i].shape, requires_grad=True).to(output1.device)
x_fuse.append(self.concat_layer[i](y1+y2+y3))
wav_length = output[0].shape[-1]
for i in range(1, len(x_fuse)):
x_fuse[i] = F.interpolate(
x_fuse[i], size=wav_length, mode='nearest')
concat = self.last_layer(torch.cat(x_fuse, dim=1))
expanded = self.res_conv(concat)
return expanded + residual
#return expanded
'''
class Attention_block(nn.Module):
def __init__(self,out_channels=128):
super(Attention_block,self).__init__()
self.W_g = ConvNorm(out_channels, out_channels, 1, 1, groups=out_channels)
self.W_x = ConvNorm(out_channels, out_channels, 1, 1, groups=out_channels)
self.psi = nn.Sequential(
ConvNorm(out_channels, out_channels, 1, 1, groups=out_channels),
nn.Sigmoid()
)
self.relu = nn.ReLU()
def forward(self, g, x):
g1 = self.W_g(g)
x1 = self.W_x(x)
psi = self.relu(g1+x1)
psi = self.psi(psi)
return x*psi
'''
class Recurrent(nn.Module):
def __init__(self,
out_channels=128,
in_channels=512,
upsampling_depth=4,
_iter=4):
super().__init__()
self.block = Block(out_channels, in_channels, upsampling_depth)
self.iter = _iter
#self.attention = Attention_block(out_channels)
self.concat_block = nn.Sequential(
nn.Conv1d(out_channels, out_channels, 1, 1, groups=out_channels),
nn.PReLU()
)
def forward(self, x):
mixture = x.clone()
for i in range(self.iter):
if i == 0:
x = self.block(x)
else:
#m = self.attention(mixture, x)
x = self.block(self.concat_block(mixture+x))
return x
class AFRCNN(nn.Module):
def __init__(self,
out_channels=128,
in_channels=512,
num_blocks=16,
upsampling_depth=4,
enc_kernel_size=21,
enc_num_basis=512,
num_sources=2):
super(AFRCNN, self).__init__()
# Number of sources to produce
self.in_channels = in_channels
self.out_channels = out_channels
self.num_blocks = num_blocks
self.upsampling_depth = upsampling_depth
self.enc_kernel_size = enc_kernel_size
self.enc_num_basis = enc_num_basis
self.num_sources = num_sources
# Appropriate padding is needed for arbitrary lengths
self.lcm = abs(self.enc_kernel_size // 2 * 2 **
self.upsampling_depth) // math.gcd(
self.enc_kernel_size // 2,
2 ** self.upsampling_depth)
# Front end
self.encoder = nn.Conv1d(in_channels=1, out_channels=enc_num_basis,
kernel_size=enc_kernel_size,
stride=enc_kernel_size // 2,
padding=enc_kernel_size // 2,
bias=False)
torch.nn.init.xavier_uniform_(self.encoder.weight)
# Norm before the rest, and apply one more dense layer
self.ln = GlobLN(enc_num_basis)
self.bottleneck = nn.Conv1d(
in_channels=enc_num_basis,
out_channels=out_channels,
kernel_size=1)
# Separation module
self.sm = Recurrent(out_channels, in_channels, upsampling_depth, num_blocks)
mask_conv = nn.Conv1d(out_channels, num_sources * enc_num_basis, 1)
self.mask_net = nn.Sequential(nn.PReLU(), mask_conv)
# Back end
self.decoder = nn.ConvTranspose1d(
in_channels=enc_num_basis * num_sources,
out_channels=num_sources,
output_padding=(enc_kernel_size // 2) - 1,
kernel_size=enc_kernel_size,
stride=enc_kernel_size // 2,
padding=enc_kernel_size // 2,
groups=1, bias=False)
torch.nn.init.xavier_uniform_(self.decoder.weight)
self.mask_nl_class = nn.ReLU()
# Forward pass
def forward(self, input_wav):
was_one_d = False
if input_wav.ndim == 1:
was_one_d = True
input_wav = input_wav.unsqueeze(0).unsqueeze(1)
if input_wav.ndim == 2:
input_wav = input_wav.unsqueeze(1)
# Front end
x = self.pad_to_appropriate_length(input_wav)
x = self.encoder(x)
# Split paths
s = x.clone()
# Separation module
x = self.ln(x)
x = self.bottleneck(x)
x = self.sm(x)
x = self.mask_net(x)
x = x.view(x.shape[0], self.num_sources, self.enc_num_basis, -1)
x = self.mask_nl_class(x)
x = x * s.unsqueeze(1)
# Back end
estimated_waveforms = self.decoder(x.view(x.shape[0], -1, x.shape[-1]))
estimated_waveforms = self.remove_trailing_zeros(
estimated_waveforms, input_wav)
if was_one_d:
return estimated_waveforms.squeeze(0)
return estimated_waveforms
def pad_to_appropriate_length(self, x):
values_to_pad = int(x.shape[-1]) % self.lcm
if values_to_pad:
appropriate_shape = x.shape
padded_x = torch.zeros(
list(appropriate_shape[:-1]) +
[appropriate_shape[-1] + self.lcm - values_to_pad],
dtype=torch.float32).to(x.device)
padded_x[..., :x.shape[-1]] = x
return padded_x
return x
@staticmethod
def remove_trailing_zeros(padded_x, initial_x):
return padded_x[..., :initial_x.shape[-1]]
def check_parameters(net):
'''
Returns module parameters. Mb
'''
parameters = sum(param.numel() for param in net.parameters())
return parameters / 10**6
if __name__ == "__main__":
wav = torch.randn(4, 32000)
model = AFRCNN(out_channels=128,
in_channels=512,
num_blocks=8,
upsampling_depth=5,
enc_kernel_size=21,
enc_num_basis=512,
num_sources=2)
output = model(wav)
parameter = check_parameters(model)