-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_dysarthria.py
219 lines (186 loc) · 8.08 KB
/
train_dysarthria.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import logging
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
import sys
import hubert_pretraining, hubert
from torch.utils.data import DataLoader
# import hubert
import tqdm
from hubert_classification_dataset import AVHubertFeatureDataset_FromFile
from dysarthria_model import Conv3AudioClassifier, ResNet50AudioClassifier
import fairseq
import torch
from torch.nn.utils.rnn import pad_sequence
import torch.nn.functional as F
from transformers import Trainer, TrainingArguments
import argparse
"""
class DysClassifierTrainer(Trainer):
def compute_loss(self, model, inputs,return_outputs=False):
# Extract inputs and labels from the dictionary
labels = inputs.get("labels")
# Forward pass
outputs = model(**inputs)
return (loss, outputs) if return_outputs else loss
"""
def compute_model_size(model):
num_params = sum(p.numel() for p in model.parameters())
return num_params
def collate_fn(batch):
features, labels, fids = zip(*batch)
# Pad sequences to the same length
padded_features = pad_sequence(features, batch_first=True)
labels = torch.tensor(labels, dtype=torch.long)
return {"features":padded_features, "labels":labels, "fids":fids}
def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
# Calculate accuracy
accuracy = accuracy_score(labels, preds)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')
return {
"accuracy": accuracy,
"precision": precision,
"recall": recall,
"f1": f1
}
def main():
parser = argparse.ArgumentParser(description="Train a ResNet50 model for audio classification")
# Add arguments
parser.add_argument('--ckpt_path', type=str, default="checkpoints/base_vox_iter5.pt", help='Path to the checkpoint file')
parser.add_argument('--train_data_dir', type=str, default='feats/base_vox_iter5/train/', help='Directory containing training data')
parser.add_argument('--eval_data_dir', type=str, default='feats/base_vox_iter5/valid/', help='Directory containing evaluation data')
parser.add_argument('--output_dir', type=str, default='./exp/base_vox_iter5-conv3/', help='Directory to save the output')
parser.add_argument('--per_device_train_batch_size', type=int, default=64, help='Batch size per device for training')
parser.add_argument('--logging_dir', type=str, default='./logs', help='Directory to save logs')
parser.add_argument('--logging_steps', type=int, default=500, help='Number of steps between logging')
parser.add_argument('--evaluation_strategy', type=str, default="epoch", help='Evaluation strategy')
parser.add_argument('--learning_rate', type=float, default=2e-5, help='Learning rate')
parser.add_argument('--num_train_epochs', type=int, default=30, help='Number of training epochs')
parser.add_argument('--num_classes', type=int, default=4, help='Number of classes for the classifier')
parser.add_argument('--classifier', type=str, default='conv3', choices=['resnet50', 'conv3'], help='Choose the classifier architecture')
parser.add_argument('--save_strategy', type=str, default='epoch', help='Save strategy')
parser.add_argument('--save_total_limit', type=int, default=3, help='Total limit of saved checkpoints')
# Parse arguments
args = parser.parse_args()
# Check if CUDA (GPU) is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Training on {device}")
training_args = TrainingArguments(
per_device_train_batch_size=args.per_device_train_batch_size,
logging_steps=args.logging_steps,
save_strategy=args.save_strategy,
save_total_limit=args.save_total_limit,
evaluation_strategy=args.evaluation_strategy,
learning_rate=args.learning_rate,
num_train_epochs=args.num_train_epochs,
output_dir=args.output_dir,
)
if args.classifier == 'resnet50':
model = ResNet50AudioClassifier(num_classes=args.num_classes).to(device)
elif args.classifier == 'conv3':
model = Conv3AudioClassifier(num_classes=args.num_classes).to(device)
else:
raise ValueError(f"Invalid classifier choice: {args.classifier}")
total_params = compute_model_size(model)
total_size_mb = total_params / (1024 * 1024)
print(f"Total size of the model: {total_size_mb:.2f} M")
train_dataset = AVHubertFeatureDataset_FromFile(data_dir=args.train_data_dir)
eval_dataset = AVHubertFeatureDataset_FromFile(data_dir=args.eval_data_dir)
# if extract featreu online
#train_dataset = AVHubertFeatureDataset(
# ckpt_path=ckpt_path,
# manifest_path="data/train.tsv",
# label_path="data/train.wrd",
# sample_rate=16000,
# modalities=["video", "audio"],
# normalize=True,
#)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=collate_fn,
compute_metrics=compute_metrics,
)
trainer.train()
if __name__ == '__main__':
main()
"""
max_epoch = cfg.optimization.max_epoch
for epoch in range(max_epoch):
# Set the model to training mode
model.train()
# Iterate over the training data
for batch in progress_bar.progress_bar(train_loader):
features, labels, fids = batch
# Convert features and labels to the appropriate device
features, labels = features.to(device), labels.to(device)
# Prepare the input dictionary expected by Fairseq's trainer
sample = {
'net_input': {
'src_tokens': features,
'src_lengths': torch.tensor([features.size(1)] * features.size(0)),
},
'target': labels,
}
# Perform a training step
trainer.train_step(sample)
# Log or process fids if needed
print(fids)
# Instantiate the custom datase
ttrain_dataset = AVHubertFeatureDataset(
ckpt_path=ckpt_path,
manifest_path="data/train.tsv",
label_path="data/train.wrd",
sample_rate=16000,
modalities=["video", "audio"],
normalize=True,
)
# Create DataLoader
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, collate_fn=collate_fn)
train_iter = iter(train_loader)
for batch in progress_bar.progress_bar(train_loader):
features, labels, fids = batch
import pdb
pdb.set_trace()
models, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
model = models[0]
# Iterate through the dataset and extract features
features = []
labels = []
fids = []
for i in tqdm.tqdm(range(len(dataset))):
data = dataset[i]
feature, _ = model.extract_finetune(
source={
"video": data["video_source"].permute(3, 0, 1, 2).unsqueeze(0),
"audio": data["audio_source"].unsqueeze(0).permute(0, 2, 1),
},
output_layer=None,
)
features.append(feature.cpu().detach().numpy())
labels.append(data["label_list"]) # Adjust this based on how your labels are stored
fids.append(data["fid"])
# Save features and labels
np.save(feat_dir + "/" + ckpt_path + '_features.npy', np.array(features))
np.save(feat_dir + "/" + ckpt_path + '_labels.npy', np.array(labels))
np.save(feat_dir + "/" + ckpt_path + '_fids.npy', np.array(fids))
data = dataset[0]
print(data["video_source"].transpose(0, -1).unsqueeze(0).shape)
print(data["audio_source"].unsqueeze(0).permute(0, 2, 1).shape)
print(data["fid"])
# print(model.encoder.w2v_model)
feature, _ = model.extract_finetune(
source={
"video": data["video_source"].permute(3, 0, 1, 2).unsqueeze(0),
"audio": data["audio_source"].unsqueeze(0).permute(0, 2, 1),
},
output_layer=None,
)
# print(feature.shape)
else:
# if use ft model (with LRS3 + VoxCeleb2)
import hubert_asr
raise NotImplementedError
"""