forked from EPFL-VILAB/MultiMAE
-
Notifications
You must be signed in to change notification settings - Fork 2
/
run_pretraining_multimae.py
585 lines (500 loc) · 27.6 KB
/
run_pretraining_multimae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
# Copyright (c) EPFL VILAB.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# Based on timm, DeiT, DINO, MoCo-v3, BEiT, MAE-priv and MAE code bases
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit
# https://github.com/facebookresearch/dino
# https://github.com/facebookresearch/moco-v3
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/BUPT-PRIV/MAE-priv
# https://github.com/facebookresearch/mae
# --------------------------------------------------------
import argparse
import datetime
import json
import math
import os
import sys
import time
import warnings
from functools import partial
from pathlib import Path
from typing import Dict, Iterable, List
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import yaml
from einops import rearrange
import utils
import utils.data_constants as data_constants
from multimae import multimae
from multimae.criterion import (MaskedCrossEntropyLoss, MaskedL1Loss,
MaskedMSELoss)
from multimae.input_adapters import PatchedInputAdapter, SemSegInputAdapter
from multimae.output_adapters import SpatialOutputAdapter
from utils import NativeScalerWithGradNormCount as NativeScaler
from utils import create_model
from utils.data_constants import COCO_SEMSEG_NUM_CLASSES
from utils.datasets import build_multimae_pretraining_dataset
from utils.optim_factory import create_optimizer
from utils.task_balancing import (NoWeightingStrategy,
UncertaintyWeightingStrategy)
DOMAIN_CONF = {
'rgb': {
'channels': 3,
'stride_level': 1,
'input_adapter': partial(PatchedInputAdapter, num_channels=3),
'output_adapter': partial(SpatialOutputAdapter, num_channels=3),
'loss': MaskedMSELoss,
},
'depth': {
'channels': 1,
'stride_level': 1,
'input_adapter': partial(PatchedInputAdapter, num_channels=1),
'output_adapter': partial(SpatialOutputAdapter, num_channels=1),
'loss': MaskedL1Loss,
},
'semseg': {
'num_classes': 133,
'stride_level': 4,
'input_adapter': partial(SemSegInputAdapter, num_classes=COCO_SEMSEG_NUM_CLASSES,
dim_class_emb=64, interpolate_class_emb=False),
'output_adapter': partial(SpatialOutputAdapter, num_channels=COCO_SEMSEG_NUM_CLASSES),
'loss': partial(MaskedCrossEntropyLoss, label_smoothing=0.0),
},
}
def get_args():
config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False)
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments')
parser = argparse.ArgumentParser('MultiMAE pre-training script', add_help=False)
parser.add_argument('--batch_size', default=256, type=int,
help='Batch size per GPU (default: %(default)s)')
parser.add_argument('--epochs', default=1600, type=int,
help='Number of epochs (default: %(default)s)')
parser.add_argument('--save_ckpt_freq', default=20, type=int,
help='Checkpoint saving frequency in epochs (default: %(default)s)')
# Task parameters
parser.add_argument('--in_domains', default='rgb-depth-semseg', type=str,
help='Input domain names, separated by hyphen (default: %(default)s)')
parser.add_argument('--out_domains', default='rgb-depth-semseg', type=str,
help='Output domain names, separated by hyphen (default: %(default)s)')
parser.add_argument('--standardize_depth', action='store_true')
parser.add_argument('--no_standardize_depth', action='store_false', dest='standardize_depth')
parser.set_defaults(standardize_depth=False)
parser.add_argument('--extra_norm_pix_loss', action='store_true')
parser.add_argument('--no_extra_norm_pix_loss', action='store_false', dest='extra_norm_pix_loss')
parser.set_defaults(extra_norm_pix_loss=True)
# Model parameters
parser.add_argument('--model', default='pretrain_multimae_base', type=str, metavar='MODEL',
help='Name of model to train (default: %(default)s)')
parser.add_argument('--num_encoded_tokens', default=98, type=int,
help='Number of tokens to randomly choose for encoder (default: %(default)s)')
parser.add_argument('--num_global_tokens', default=1, type=int,
help='Number of global tokens to add to encoder (default: %(default)s)')
parser.add_argument('--patch_size', default=16, type=int,
help='Base patch size for image-like modalities (default: %(default)s)')
parser.add_argument('--input_size', default=224, type=int,
help='Images input size for backbone (default: %(default)s)')
parser.add_argument('--alphas', type=float, default=1.0,
help='Dirichlet alphas concentration parameter (default: %(default)s)')
parser.add_argument('--sample_tasks_uniformly', default=False, action='store_true',
help='Set to True/False to enable/disable uniform sampling over tasks to sample masks for.')
parser.add_argument('--decoder_use_task_queries', default=True, action='store_true',
help='Set to True/False to enable/disable adding of task-specific tokens to decoder query tokens')
parser.add_argument('--decoder_use_xattn', default=True, action='store_true',
help='Set to True/False to enable/disable decoder cross attention.')
parser.add_argument('--decoder_dim', default=256, type=int,
help='Token dimension inside the decoder layers (default: %(default)s)')
parser.add_argument('--decoder_depth', default=2, type=int,
help='Number of self-attention layers after the initial cross attention (default: %(default)s)')
parser.add_argument('--decoder_num_heads', default=8, type=int,
help='Number of attention heads in decoder (default: %(default)s)')
parser.add_argument('--drop_path', type=float, default=0.0, metavar='PCT',
help='Drop path rate (default: %(default)s)')
parser.add_argument('--loss_on_unmasked', default=False, action='store_true',
help='Set to True/False to enable/disable computing the loss on non-masked tokens')
parser.add_argument('--no_loss_on_unmasked', action='store_false', dest='loss_on_unmasked')
parser.set_defaults(loss_on_unmasked=False)
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: %(default)s)')
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer epsilon (default: %(default)s)')
parser.add_argument('--opt_betas', default=[0.9, 0.95], type=float, nargs='+', metavar='BETA',
help='Optimizer betas (default: %(default)s)')
parser.add_argument('--clip_grad', type=float, default=None, metavar='CLIPNORM',
help='Clip gradient norm (default: %(default)s)')
parser.add_argument('--skip_grad', type=float, default=None, metavar='SKIPNORM',
help='Skip update if gradient norm larger than threshold (default: %(default)s)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: %(default)s)')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='Weight decay (default: %(default)s)')
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the
weight decay. We use a cosine schedule for WD. (Set the same value as args.weight_decay to keep weight decay unchanged)""")
parser.add_argument('--decoder_decay', type=float, default=None, help='decoder weight decay')
parser.add_argument('--blr', type=float, default=1e-4, metavar='LR',
help='Base learning rate: absolute_lr = base_lr * total_batch_size / 256 (default: %(default)s)')
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR',
help='Warmup learning rate (default: %(default)s)')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='Lower lr bound for cyclic schedulers that hit 0 (default: %(default)s)')
parser.add_argument('--task_balancer', type=str, default='none',
help='Task balancing scheme. One out of [uncertainty, none] (default: %(default)s)')
parser.add_argument('--balancer_lr_scale', type=float, default=1.0,
help='Task loss balancer LR scale (if used) (default: %(default)s)')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
help='Epochs to warmup LR, if scheduler supports (default: %(default)s)')
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N',
help='Epochs to warmup LR, if scheduler supports (default: %(default)s)')
parser.add_argument('--fp32_output_adapters', type=str, default='',
help='Tasks output adapters to compute in fp32 mode, separated by hyphen.')
# Augmentation parameters
parser.add_argument('--hflip', type=float, default=0.5,
help='Probability of horizontal flip (default: %(default)s)')
parser.add_argument('--train_interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic) (default: %(default)s)')
# Dataset parameters
parser.add_argument('--data_path', default=data_constants.IMAGENET_TRAIN_PATH, type=str, help='dataset path')
parser.add_argument('--imagenet_default_mean_and_std', default=True, action='store_true')
# Misc.
parser.add_argument('--output_dir', default='',
help='Path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='Device to use for training / testing')
parser.add_argument('--seed', default=0, type=int, help='Random seed ')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--auto_resume', action='store_true')
parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume')
parser.set_defaults(auto_resume=True)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
parser.add_argument('--find_unused_params', action='store_true')
parser.add_argument('--no_find_unused_params', action='store_false', dest='find_unused_params')
parser.set_defaults(find_unused_params=True)
# Wandb logging
parser.add_argument('--log_wandb', default=False, action='store_true',
help='Log training and validation metrics to wandb')
parser.add_argument('--no_log_wandb', action='store_false', dest='log_wandb')
parser.set_defaults(log_wandb=False)
parser.add_argument('--wandb_project', default=None, type=str,
help='Project name on wandb')
parser.add_argument('--wandb_entity', default=None, type=str,
help='User or team name on wandb')
parser.add_argument('--wandb_run_name', default=None, type=str,
help='Run name on wandb')
parser.add_argument('--show_user_warnings', default=False, action='store_true')
# Distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
# Do we have a config file to parse?
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
return args
def get_model(args):
"""Creates and returns model from arguments
"""
print(f"Creating model: {args.model} for inputs {args.in_domains} and outputs {args.out_domains}")
input_adapters = {
domain: DOMAIN_CONF[domain]['input_adapter'](
stride_level=DOMAIN_CONF[domain]['stride_level'],
patch_size_full=args.patch_size,
)
for domain in args.in_domains
}
output_adapters = {
domain: DOMAIN_CONF[domain]['output_adapter'](
stride_level=DOMAIN_CONF[domain]['stride_level'],
patch_size_full=args.patch_size,
dim_tokens=args.decoder_dim,
depth=args.decoder_depth,
num_heads=args.decoder_num_heads,
use_task_queries=args.decoder_use_task_queries,
task=domain,
context_tasks=list(args.in_domains),
use_xattn=args.decoder_use_xattn
)
for domain in args.out_domains
}
# Add normalized pixel output adapter if specified
if args.extra_norm_pix_loss:
output_adapters['norm_rgb'] = DOMAIN_CONF['rgb']['output_adapter'](
stride_level=DOMAIN_CONF['rgb']['stride_level'],
patch_size_full=args.patch_size,
dim_tokens=args.decoder_dim,
depth=args.decoder_depth,
num_heads=args.decoder_num_heads,
use_task_queries=args.decoder_use_task_queries,
task='rgb',
context_tasks=list(args.in_domains),
use_xattn=args.decoder_use_xattn
)
model = create_model(
args.model,
input_adapters=input_adapters,
output_adapters=output_adapters,
num_global_tokens=args.num_global_tokens,
drop_path_rate=args.drop_path
)
return model
def main(args):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# Fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
if not args.show_user_warnings:
warnings.filterwarnings("ignore", category=UserWarning)
args.in_domains = args.in_domains.split('-')
args.out_domains = args.out_domains.split('-')
args.all_domains = list(set(args.in_domains) | set(args.out_domains))
model = get_model(args)
if args.task_balancer == 'uncertainty':
loss_balancer = UncertaintyWeightingStrategy(tasks=args.out_domains)
else:
loss_balancer = NoWeightingStrategy()
tasks_loss_fn = {
domain: DOMAIN_CONF[domain]['loss'](patch_size=args.patch_size, stride=DOMAIN_CONF[domain]['stride_level'])
for domain in args.out_domains
}
# Add normalized pixel loss if specified
if args.extra_norm_pix_loss:
tasks_loss_fn['norm_rgb'] = DOMAIN_CONF['rgb']['loss'](patch_size=args.patch_size,
stride=DOMAIN_CONF['rgb']['stride_level'],
norm_pix=True)
# Get dataset
dataset_train = build_multimae_pretraining_dataset(args)
if True: # args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
sampler_rank = global_rank
num_training_steps_per_epoch = len(dataset_train) // args.batch_size // num_tasks
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True, drop_last=True,
)
print("Sampler_train = %s" % str(sampler_train))
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
if global_rank == 0 and args.log_wandb:
log_writer = utils.WandbLogger(args)
else:
log_writer = None
print(args)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
model.to(device)
loss_balancer.to(device)
model_without_ddp = model
loss_balancer_without_ddp = loss_balancer
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Model = %s" % str(model_without_ddp))
print(f"Number of params: {n_parameters / 1e6} M")
total_batch_size = args.batch_size * utils.get_world_size()
args.lr = args.blr * total_batch_size / 256
print("LR = %.8f" % args.lr)
print("Batch size = %d" % total_batch_size)
print("Number of training steps = %d" % num_training_steps_per_epoch)
print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch))
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=args.find_unused_params)
# model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
if args.distributed and args.task_balancer != 'none':
loss_balancer = torch.nn.parallel.DistributedDataParallel(loss_balancer, device_ids=[args.gpu])
loss_balancer_without_ddp = loss_balancer.module
optimizer = create_optimizer(
args, {'model': model_without_ddp, 'balancer': loss_balancer_without_ddp})
loss_scaler = NativeScaler()
print("Use step level LR & WD scheduler!")
lr_schedule_values = utils.cosine_scheduler(
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
)
if args.weight_decay_end is None:
args.weight_decay_end = args.weight_decay
wd_schedule_values = utils.cosine_scheduler(
args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch)
print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values)))
utils.auto_load_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
if log_writer is not None:
log_writer.set_step(epoch * num_training_steps_per_epoch)
train_stats = train_one_epoch(
model=model,
data_loader=data_loader_train,
tasks_loss_fn=tasks_loss_fn,
loss_balancer=loss_balancer,
optimizer=optimizer,
device=device,
epoch=epoch,
loss_scaler=loss_scaler,
max_norm=args.clip_grad,
max_skip_norm=args.skip_grad,
log_writer=log_writer,
start_steps=epoch * num_training_steps_per_epoch,
lr_schedule_values=lr_schedule_values,
wd_schedule_values=wd_schedule_values,
num_encoded_tokens=args.num_encoded_tokens,
in_domains=args.in_domains,
loss_on_unmasked=args.loss_on_unmasked,
alphas=args.alphas,
sample_tasks_uniformly=args.sample_tasks_uniformly,
standardize_depth=args.standardize_depth,
extra_norm_pix_loss=args.extra_norm_pix_loss,
fp32_output_adapters=args.fp32_output_adapters.split('-')
)
if log_writer is not None:
log_writer.update({**{k: v for k, v in train_stats.items()}, 'epoch': epoch})
if args.output_dir:
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, loss_balancer=loss_balancer_without_ddp, epoch=epoch)
log_stats = {**{k: v for k, v in train_stats.items()},
'epoch': epoch, 'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
def train_one_epoch(model: torch.nn.Module, data_loader: Iterable, tasks_loss_fn: Dict[str, torch.nn.Module],
loss_balancer: torch.nn.Module, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = None, max_skip_norm: float = None,
log_writer=None, lr_scheduler=None, start_steps=None, lr_schedule_values=None, wd_schedule_values=None,
num_encoded_tokens: int = 196, in_domains: List[str] = [] , loss_on_unmasked: bool = True,
alphas: float = 1.0, sample_tasks_uniformly: bool = False, standardize_depth: bool = True,
extra_norm_pix_loss: bool = False, fp32_output_adapters: List[str] = []):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
for step, (x, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
# assign learning rate & weight decay for each step
it = start_steps + step # global training iteration
if lr_schedule_values is not None or wd_schedule_values is not None:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"]
if wd_schedule_values is not None and param_group["weight_decay"] > 0:
param_group["weight_decay"] = wd_schedule_values[it]
tasks_dict = {
task: tensor.to(device, non_blocking=True)
for task, tensor in x.items()
}
# Truncated depth standardization
if standardize_depth and 'depth' in tasks_dict:
# Flatten depth and remove bottom and top 10% of values
trunc_depth = torch.sort(rearrange(tasks_dict['depth'], 'b c h w -> b (c h w)'), dim=1)[0]
trunc_depth = trunc_depth[:,int(0.1 * trunc_depth.shape[1]): int(0.9 * trunc_depth.shape[1])]
tasks_dict['depth'] = (tasks_dict['depth'] - trunc_depth.mean(dim=1)[:,None,None,None]) / torch.sqrt(trunc_depth.var(dim=1)[:,None,None,None] + 1e-6)
input_dict = {
task: tensor
for task, tensor in tasks_dict.items()
if task in in_domains
}
with torch.cuda.amp.autocast():
preds, masks = model(
input_dict,
num_encoded_tokens=num_encoded_tokens,
alphas=alphas,
sample_tasks_uniformly=sample_tasks_uniformly,
fp32_output_adapters=fp32_output_adapters
)
if extra_norm_pix_loss:
tasks_dict['norm_rgb'] = tasks_dict['rgb']
masks['norm_rgb'] = masks.get('rgb', None)
task_losses = {}
for task in preds:
target = tasks_dict[task]
if loss_on_unmasked:
task_losses[task] = tasks_loss_fn[task](preds[task].float(), target)
else:
task_losses[task] = tasks_loss_fn[task](preds[task].float(), target, mask=masks.get(task, None))
weighted_task_losses = loss_balancer(task_losses)
loss = sum(weighted_task_losses.values())
loss_value = sum(task_losses.values()).item()
task_loss_values = {f'{task}_loss': l.item() for task, l in task_losses.items()}
weighted_task_loss_values = {f'{task}_loss_weighted': l.item() for task, l in weighted_task_losses.items()}
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
optimizer.zero_grad()
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm, skip_grad=max_skip_norm,
parameters=model.parameters(), create_graph=is_second_order)
loss_scale_value = loss_scaler.state_dict()["scale"]
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
metric_logger.update(**task_loss_values)
metric_logger.update(loss_scale=loss_scale_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
metric_logger.update(min_lr=min_lr)
weight_decay_value = None
for group in optimizer.param_groups:
if group["weight_decay"] > 0:
weight_decay_value = group["weight_decay"]
metric_logger.update(weight_decay=weight_decay_value)
metric_logger.update(grad_norm=grad_norm)
if log_writer is not None:
log_writer.update(
{
'loss': loss_value,
'lr': max_lr,
'weight_decay': weight_decay_value,
'grad_norm': grad_norm,
}
)
log_writer.update(task_loss_values)
log_writer.update(weighted_task_loss_values)
log_writer.set_step()
if lr_scheduler is not None:
lr_scheduler.step_update(start_steps + step)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {'[Epoch] ' + k: meter.global_avg for k, meter in metric_logger.meters.items()}
if __name__ == '__main__':
opts = get_args()
if opts.output_dir:
Path(opts.output_dir).mkdir(parents=True, exist_ok=True)
main(opts)